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Abstract. In this study, the numerical investigation of flow and heat transfer around a heated 
long inclined square cylinder in a steady laminar regime is carried out for the range of 
conditions as 1 ≤ Re ≤ 40 and 0.7 ≤ Pr ≤ 100. The square cylinder is placed on the axis of a 
plane channel and an angle of inclination equal to 45° with a fixed blockage ratio of 1/8 is 
considered. The variation of local Nusselt number on each surface of the heated square 
obstacle for the constant wall temperature and uniform heat flux boundary conditions are 
presented to elucidate the role of Prandtl number on heat transfer. The average Nusselt 
number increases with a growth in the Reynolds and/or the Prandtl number. This value is 
higher for uniform heat flux condition in comparison with constant temperature one. Simple 
correlations have been also obtained for the Nusselt number according to the different 
Reynolds and Prandtl numbers for both boundary conditions. In addition, In order to 
investigate the flow characteristics, results are presented in terms of streamline and vorticity 
contours. Under a provided correlation, the length of recirculation increases linearly with the 
Reynolds number. 



13th Annual & 2nd International Fluid Dynamics conference                                                                                                                          
Fd2010-26-28 Oct. Shiraz University 

Shiraz Iran

2

1 INTRODUCTION

For a long time, the study of flow around cylindrical  bluff bodies of circular and square 
cross-sections has been subject of intense experimental and numerical researches because of 
the importance of these flows in numerous industrial applications such as cooling towers, gas 
and oil pipelines, flow-meters, chimneys, antennas, support structures, etc. Besides, the flow 
over a block is academically attractive, for it can be a good opportunity to study such these 
flow phenomena and predict characteristics of similar flows occurring in technology. 
Consequently, there are many works in the literature relating to different aspects of flows
around cylinders surveying characteristics of hydrodynamics and heat transfer.

However, in the case of a square cross-section cylinder, the separation points are fixed 
because the square cylinder has four sharp edges with flat wall surfaces. Recently, Dhiman et 
al. [1] reviewed different flow regimes according to the different values of the Reynolds 
numbers among the considerable amount of data gathered for square cylinder with one side 
facing the flow: there is a creeping flow with no flow separation at the surface of the cylinder 
for Re ≤ 1. Then by increasing the Reynolds number a closed steady recirculation region is 
observed behind the bluff body. This recirculation region enlarges with increasing Re and at a 
critical Reynolds number (50 < Re < 70), a von Karman vortex street forms in the flow field 
the flow becomes unsteady. When the Reynolds number is further increased (100 ≤ Re ≤ 200),
the separation points go to the leading edges of the cylinder and after around Re = 160, a 
three-dimensional flow in an unbounded geometry is detected. The onset of this three-
dimensional flow is not fully investigated yet in the literature. In that work, Dhiman et al. [1] 
studied the effects of Reynolds (1 ≤ Re ≤ 45) and Prandtl (0.7 ≤ Pr ≤ 4000) numbers on the 
characteristics of cross flow and heat transfer of Newtonian fluids around a confined square 
cylinder. 

Davis et al. [2] presented both numerical and experimental results for confined flow around 
rectangular cylinders for two blockage ratios (β = 1/4 and 1/6) and three rectangular aspect 
ratios (A = 0.6, 1 and 1.7) at Reynolds numbers ranging from 100 to 1850. They found that 
the presence of confining walls and the form of upstream velocity profile lead to numerous 
changes in the characteristics of the flow around rectangles. 

Breuer et al. [3] conducted a two dimensional study for a confined flow around a square 
cylinder mounted inside a plane channel with a blockage ratio of 1/8 by two different 
numerical techniques, namely a Lattice Boltzmann Equation (LBE) and a finite volume 
method (FVM) in the Reynolds number range 0.5 ≤ Re ≤ 300 with a parabolic velocity profile 
at the channel inlet. They evaluated the integral quantities such as drag coefficient, 
recirculation length and Strouhal number for both steady (0.5 ≤ Re ≤60) and unsteady 
(60 ≤ Re ≤ 300) flows and found an excellent agreement between LBE and FVM.

Turki et al. [4] have numerically studied the forced and mixed convection around a heated 
square cylinder mounted inside a horizontal channel for the two-dimensional unsteady flow 
region 62 ≤ Re ≤ 200 at Richardson numbers (Ri) up to 0.1 for two blockage ratios of 1/4 and 
1/8. In pure forced convection the value of the critical Reynolds number (onset of periodic 
flow) increases with increasing the blockage ratio. In mixed convection, the critical value of 
Reynolds number decreases with increasing the Richardson number.   They also proposed the 
Nusselt number correlations for forced and mixed convections. 

Gupta et al. [5] studied the heat transfer of power-law liquids around a confined square
cylinder for 5 ≤ Re ≤ 40, 0.5 ≤ n ≤ 1.4 and 1 ≤ Pr ≤ 10 (5 ≤ Pe ≤ 400) for both constant wall 
temperature (CWT) and uniform heat flux (UHF) conditions on the surface of cylinder for a 
fixed blockage ratio of 1/8 on uniform staggered grid arrangement in a long channel with a 
parabolic velocity profile at the channel inlet and Orlanski condition at the channel outlet. 
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Relatively shorter wake regions in shear-thinning liquids than shear-thickening liquids are 
observed. The effect of the Reynolds number on the flow patterns is qualitatively similar to 
that seen for Newtonian fluids. On the whole, heat transfer is fascinated for shear-thinning 
behaviors of liquids and hampered for shear-thickening behaviors.

While the flow over the square cylinder obey the regime with the fixed separation points at
the leading edges, the aerodynamics are relatively insensitive to the Reynolds number, but are
more sensitive to the angle of incidence [6]. Consequently it is quite likely that the flow
characteristics, aerodynamic forces, vortex shedding frequency, heat-transfer performance,
etc., will exhibit distinct behaviors in different ranges of incidence angle of the square
cylinder [7].

Sohankar et al. [8] studied the onset of vortex shedding and the influence of outlet 
boundary conditions and blockage ratio for unsteady Newtonian flow over a square cylinder 
at incidence (0 ≤ α ≤ 45°) confined in a 2D channel and exposed to a constant free stream 
velocity for the range of 45 ≤ Re ≤ 200 (Re based on constant entrance velocity and projected 
diameter of square). They concluded that when a square cylinder is inclined with respect to 
the direction of the main flow, flow separation may occur at various pairs of the edges of the 
square, resulting in drastic change of the key flow parameters such as force coefficients and 
the Strouhal number. Conjecturing that the critical Reynolds number increases with increasing 
blockage ratio, they obtained the critical Reynolds based on diameter of cylinder for onset of 
vortex shedding at a blockage of 5% and an incidence angle of α = 45° equal to 42.

Yoon et al. [9] numerically investigated feasibility of using large-scale vortices to enhance 
heat transfer on a channel wall with constant heat flux by using an adiabatic square cylinder at 
different incidence angles θ at Re =500 and 750. Obtaining the maximum enhancement at 
θ = 45°, they found that vertical velocity fluctuation plays a key role in convective heat 
transfer on the channel wall and so an inclined square cylinder is an effective tool to control 
heat transfer in channel flows.

Moussaoui et al. [10] simulated two-dimensional incompressible flow and heat transfer in 
a horizontal channel differentially heated and obstructed by an inclined square cylinder with 
an angle of 45° to the flow for the Reynolds numbers ranging 0 ≤ Re ≤ 300, Pr = 0.7 and the 
blockage ratio of β = 1/4, using a strategy based on lattice Boltzmann for fluid velocity fields 
and finite difference for temperature. They imposed a fully developed profile at the inlet and 
the Neumann boundary condition, i.e., setting the stream wise gradients of the velocity and 
temperature to zero, at the outlet. They found that the critical Reynolds number (based on the 
square diameter and the maximum inlet velocity) for onset of vortex shedding is about 82.

Most of the scant available literatures on the fluid flow over an inclined square cylinder are 
in unsteady region surveying the vortex shedding phenomenon. On the other hand much less 
attention has been devoted to heat transfer characteristics. The studies on the effects of the 
Prandtl number on heat transfer haven’t been of interest to scientists over the years. However 
it is readily admitted that in chemical, petroleum and oil related industrial applications the 
values of Prandtl number up to 100 are frequently encountered.

Recently, little prior work is carried out on the effect of Prandtl number on the forced and 
mixed convection heat transfer from cylinders of circular or square (with no angle of attack) 
cross section, but there is no numerical results in the literature on the effects of Prandtl 
number on the heat transfer coefficients around an inclined square cylinder. Therefore, the 
main purpose of the present work is to study and correlate the heat transfer characteristics for 
an inclined square cylinder with emphasis on the effects of the different Prandtl numbers in a 
wide range (0.7 ≤ Pr ≤ 100) for a fixed blockage ratio of β = 1/8.
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2 PROBLEM STATEMENT AND GOVERNING EQUATIONS

The system of interest here is the steady, incompressible, two dimensional laminar flow of 
Newtonian fluids past a square cylinder (diameter = b) at an incidence angle of 45° with 
respect to the channel centerline and symmetrically confined inside an adiabatic channel (Fig. 
1). Two different thermal boundary conditions on the square cylinder surfaces are considered 
here: constant wall temperature (CWT) and uniform heat flux (UHF). The aim is to simulate 
an infinitely long channel. However, as the computational domain has to be finite, a fully 
developed parabolic velocity profile, with the maximum value of Umax, and a constant 
temperature of Tin is enforced at the inlet of the channel, while, the Neumann boundary 
condition (NBC) is imposed at the outlet. The thermo-physical properties of streaming liquid 
are assumed to be independent of temperature; furthermore, the viscous dissipation effects are 
also assumed to be negligible. These two assumptions restrict the applicability of the results 
to the situations where the maximum temperature difference and the Brinkman number in the 
flow domain remain low enough in order to satisfy the temperature independency and viscous 
dissipation negligibility, respectively. The Brinkman number provides an adequate estimate of 
the ratio between the heat generated by viscous heating and the heat exchanged at the wall 
[11]. The distance from the inlet plane to the front corner of the obstacle (upstream distance) 
is Xu, and the distance between the rear corner and the exit plane (downstream distance) is Xd. 
The total non-dimensional length of the computational domain is L2/b in the axial direction. 
The non-dimensional height in the lateral direction, L1/b, defines the blockage ratio 
(β = b/L1). A constant blockage ratio of β = 1/8 has been used in this work.

b
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Figure 1: Schematic of a confined flow over an inclined square cylinder

The governing equations in their dimensionless forms, i.e., the continuity, the x- and y-
components (assuming negligible buoyancy effects) of the Navier-Stokes and the thermal 
energy equations (assuming negligible viscous dissipation and constant thermo-physical 
properties) are written as follows:

Continuity:

(1)  * *

* *
0

u v

x y

 
 

 

x-Momentum:

(2)  * * * 2 * 2 *
* *

* * * *2 *2

1u u p u u
u v

x y x Re x y

     
          
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y-Momentum:

(3)  * * * 2 * 2 *
* *

* * * *2 *2

1v v p v v
u v

x y x Re x y

     
          

Energy equation:

(4)  * * 2 * 2 *
* *

* * *2 *2

1T T T T
u v

x y Pe x y

    
       

The boundary conditions for the momentum and energy equations in their dimensionless 
forms may be written as (Fig. 1):

Inlet boundary:
2* * * *1 2 , 0, 0u y v T   

where β = b/L1 and -L/2b ≤ y* ≤ L/2b.

Upper and lower boundary:
*

* *
*

0, 0, 0
T

u v
y


  


Square cylinder:

*
* * *

*
0, 0, 1( ) 1 ( )

s

T
u v T CWT or UHF

n


    


Where ns

* is the dimensionless normal direction of cylinder surface.
     Outlet boundary:

* * *

* * *
0, 0, 0

u v T

x x x

  
  

  

Without assuming the symmetry of the flow about the centerline of the channel, numerical 
solution of governing equations in conjugation with the above-mentioned boundary 
conditions are solved to obtain the velocity u*(x*,y*), v*(x*,y*),pressure p*(x*,y*) and 
temperature T*(x*,y*) fields in the full domain (Fig. 1). The fully converged velocity field has 
been used as an input to solve thermal energy equation. These fields, in turn, are used to 
deduce the values of integral quantities and of the derived variables like stream function and 
vorticity. In this study, the local Nusselt number is defined as Nulocal = -∂T*/∂ns

* and 
Nulocal = 1/Tw

* for the constant temperature and constant heat flux boundary conditions, 
respectively. So for a fixed geometry, there are two effective (Re and Pr) and two effected 
(CD and Nu) dimensionless parameters in this problem.

3 NUMERICAL SOLUTION PROCEDURES

3.1 Grid Structure

The grid structure used in the present work is shown in figure 2. It shows grid structure for 
the whole computational domain. It consists of separate zones with uniform and non-uniform 
grid distribution having fine grids in the regions of large gradients and coarser grids in the 
regions of low gradients. There are three different grid distributions in the centerline of the 
channel in x-direction. There are the finest uniform grids with a constant cell size, δ, in an 
inner region around the obstacle over a distance of 1.5b to capture wake-wall interactions in 
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both directions. The coarsest uniform grid distribution in x-direction with a constant cell size, 
Δ = 0.25b, is applied in an outer region that extends beyond 8.5b from the inlet surface and 
16.5b from the outlet surface of the channel toward the obstacle. A scheme with constant ratio 
of any two succeeding interval lengths has been used for stretching the cell sizes between 
these limits of δ and Δ in the x-direction. A similar scheme is employed symmetrically for 
generating the grid points extending from 0.25b of the side corners of the body to the channel 
walls in the y-direction. A fine grid size, δ, is also clustered near the upper and lower walls of 
the channel. A scheme using quadrilateral grid elements is also used in x-y direction to mesh 
the triangular gaps around the uniform grids beside the cylinder (figure 2(b)).

a

b

Figure 2. Non-uniform computational grid structure with 330×315 (x×y) grid points: (a) computational domain 
(b) close up the cylinder

3.2 Numerical Details

The governing equations subjected to the aforementioned boundary conditions are solved 
using a finite volume based code according to the semi-implicit method for the pressure 
linked equations (SIMPLE) algorithm. A second-order upwind scheme is used to discretize 
the convective terms in the momentum and thermal energy equations, while the diffusive 
terms are discretized using central differences. The velocity fields obtained by solving the 
Navier Stokes equations are used as an input to the thermal energy equation. Convergence 
criteria of 10-10 for the continuity and x- and y-components of the velocity and 10-15 for the 
temperature were prescribed in this work.

3.3 Domain and Grid Independence

The accuracy and reliability of the numerical results is contingent upon the choice of an 
optimal grid and upstream and downstream distances describing the flow domain. In this 
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research, the non-dimensional upstream and downstream distances of the computational 
domain are selected Xu/b=10.5 and Xd/b=20.5, respectively (figure 1). These values are 
chosen based on the performed studies in the present work to reduce the effects of inlet and 
outlet boundary conditions on the flow and heat transfer characteristics near the obstacle. In 
order to explore the influence of the assumed finite domain, additional computations have 
been carried out for the two extreme values of the Reynolds number (Re=1 and 40), each for 
the two extreme values of Prandtl number (Pr=1 and 100) for both thermal boundary 
conditions in study of domain and grid independence. However, just the maximum values of 
changes are mentioned here.

Therefore, in order to find the appropriate value of upstream distance, It can be announced 
that increasing the upstream extent from 8.5 and 10.5 to 13.5 (having downstream distance 
constant (Xd/b=20.5)) produces the maximum percentage change of 0.07% and 0.02% in the 
value of the drag coefficient (CD) for Re=40, respectively, while the upmost percentage 
changes in the values of the average Nusselt numbers for Xu/b=8.5 and 10.5 are 0.18% and 
0.05% with respect to the value of average Nusselt number for Xu/b=13.5 at Re=1, Pr=1 for 
both thermal boundary conditions.

Furthermore, while the downstream distance is increased, for the constant value of 
upstream (Xu/b=10.5), the maximum changes in the value of CD and Nu occur at Re=40 and 
Pr=1.The relative percentage changes for these Re and Pr numbers in the values of CD are 
0.88%, 0.24% and 0.006% for Xd/b=4.5, 6.5 and 10.5 as compared to Xd/b=20.5, respectively. 
The same comparison for the values of the average Nu leads to the percentage changes of 
0.16%, 0.04% and 0.001%, respectively. In addition, it is found that an increase from Xd=20.5 
to 30 gives negligible influences on global flow and heat transfer quantities(less than 0.01%).

Table 1: Grid independence study of CD and Nu for Re=40 (CWT) 

Grid δ Grid size (M×N) No. of cells CD Nu (Pr=1) Nu (Pr=100)

G1 0.03 136 × 205 28404 1.5906 3.7252 20.8033

G2 0.02 186 × 241 45538 1.5962 3.7159 19.9335

G3 0.01 186 ×241 50310 1.6028 3.7074 19.2426

G4 0.01 250 × 335 87826 1.6028 3.7077 19.2140

G5 0.01 314 × 329 107390 1.6032 3.7085 19.2216

G6 0.008 292 × 380 117504 1.6042 3.7068 19.1280
M Number of cells on the channel entrance line, N number of cells on the channel walls, δ grid 
spacing in the 1.5b region around the cylinder

Having fixed the domain size, the grid independence has been carried out by using 
different non-uniform structured grids for the same values of Reynolds and Prandtl numbers. 
In grid study, it was seen that the maximum percentage changes in the values of the drag 
coefficient and the average Nusselt number mostly occurred for maximum values of Re and 
Pr numbers (Re=40 and Pr=100) for both thermal boundary conditions on the cylinder 
surface (CWT and UHF). Table 1 shows the effects of six different grid structures on the drag 
coefficient and the average Nusselt number for Re=40 and the maximum and minimum 
values of Prandtl number (Pr=1 and 100) for constant wall temperature boundary condition. 
The refinement in the grid from G5 to G6 shows 0.06%, 0.05% and 0.49% changes for CD, 
Nu (for Pr=1) and Nu (for Pr=100), respectively. Therefore the grid G5 (314! 329 and 
δ=0.01) is believed to be sufficiently refined to simulate flow and heat transfer phenomena.
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4 RESULTS AND DISCUSSION

In order to examine the influence of the inclined square obstacle upon the flow and 
temperature field inside the channel, steady flow numerical computations have been carried 
out using the full domain (-L/2b ≤ y* ≤ L/2b) for the following values of dimensionless 
parameters: Reynolds number, Re=1, 5, 10, 20, 30 and 40; Prandtl number, Pr=1, 5, 10, 20,
50 and 100 and for the constant value of blockage ratio, β = 1/8. The role of two classical 
thermal boundary conditions, i.e., CWT and UHF has also been examined for the above range 
of conditions.

4.1 Validation of Results

In order to judge the accuracy of the obtained results for the inclined square cylinder at 
incidence angle, α = 45°, the fluid flow and the heat transfer around a square cylinder with no 
angle of incidence (α = 0°) are also studied and their results are compared with the existing 
results [1 and 3]. In figure 3(a), total drag coefficient is presented and compared with the 
results given by Dhiman et al. [1] and Breuer et al. [3] for a confined flow around a cylinder 
with square cross-section mounted inside a plane channel with a blockage ratio of 1/8 for 
Re = 10, 20, 30 and 40 (both using finite volume method with 100 control volumes on each 
face of the cylinder). Furthermore, for accrediting the obtained heat transfer characteristics, a 
comparison of the present values of the average Nusselt number on the cylinder with those of 
Dhiman et al. [1] is presented in Table 2. On the other hand, for validating the results within 
the desired inclination angle, a comparison on the total drag coefficient is done in figure 3(b) 
with the results of Moussaoui et al. [10] for an inclined square cylinder (α = 45°) confined in a 
channel with a blockage ratio of 1/4 for Re = 20, 30, 40, 50 and 60. As can be seen, our 
results compare favorably graphically with those reported by others in these figures. A small 
deviation between the numerical results depends on the different grids used, solution 
algorithm, numerical errors due to iteration, round-up and programming and so on. For 
example, the maximum deviations between the obtained drag coefficients and the results of 
Dhiman et al. [1] and Breuer et al. [3] in figures 3(a) are about 2% and 4.5%, respectively.

These deviations are about 7.3% and 1.6% in figure 3(b) and table 2 respectively for CD

and Nu. The non-dimensional wake lengths are also exactly similar to the values reported by 
Dhiman et al. [1] for all Reynolds numbers studied here.

a Re

C
d

10 20 30 401.5

2

2.5

3

3.5

4

Present
Dhiman et al.
Breuer et al.

b Re

C
d

20 30 40 50 601.5

2

2.5

3

Moussaoui et al.
Present

Figure 3: comparison with previous works (a) straight square for β = 1/8, (b) inclined square for β = 1/4
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Table 2. Comparison of Nu with the literature values (α = 0, β = 1/8)

Re = 10 Re = 20 Re = 30 Re = 40
Pr 10 100 10 100 10 100 10 100

Present 3.67 7.58 4.82 10.37 5.75 12.53 6.53 14.28

Dhiman et al. [1] 3.66 7.64 4.88 10.41 5.69 12.52 6.59 14.15

4.2 Flow Patterns

Figure 4 elucidates representative streamline and vorticity profiles around the inclined 
square cylinder for different Reynolds numbers ranging from 1 to 40. It is clearly seen in 
figure 4(a) and (b) (for Re = 1 and 5, respectively) that a creeping steady flow with no 
separation points pasts the inclined square cylinder as viscous forces dominate the flow. As 
the Reynolds number increases, the flow separation occurs at a Reynolds number between 5 
and 10 and two small symmetric vortices, rotating in opposite directions, are observed in the 
recently created wake region behind the obstacle. The size of these vortices grows with an 
increase in the Reynolds number (figure 4(c)-(f)). The vorticity profiles can also be used to 
locate the separation points and to investigate the behavior of the fluid flow, especially near 
the solid walls. The maximum magnitude of the vorticity is seen to occur around the side 
edges of the obstacle. The vorticity profiles are also moved towards the flow with rising 
Reynolds number.
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Figure 4: Streamline and vorticity profiles (upper and lower half present the results for streamline and vorticity, 
respectively) for (a) Re = 1, (b) Re = 5, (c) Re = 10, (d) Re = 20, (e) Re = 30 and (f) Re = 40 at β = 1/8
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4.3 Recirculation Length

Figure 5(a) shows the computed results for the non-dimensional recirculation length Lr

(defined as the distance from the rare edge of the obstacle to the point of attachment for the 
near closed streamline on the axis of symmetry at y = 0) as a function of the Reynolds 
number. The length of the recirculation region is seen to increase linearly with Reynolds 
number. Zdravkovich [12] suggested the linear empirical relation the recirculation length for 
an unconfined circular cylinder as:

(5)  
/ 0.05 for 4.4 40.rL b Re Re  

Dhiman et al. [1] also proposed the following linear relationship between the recirculation 
length and Reynolds number for a straight square cylinder with a blockage ratio of 1/8 in the 
steady flow regime:

(6)  
/ 0.0732 0.0563 for 5 45.rL b Re Re    

Similarly to the relationship (6) for the straight square cylinder, a curve fit of the present
inclined square cylinder results (β = 1/8) leads to

(7)  
/ 0.618 0.072 for 10 40.rL b Re Re    

According to this derived equation, the onset of separation can be predicted at Re ! 8.6. It 
can be announced that the recirculation length of the inclined square cylinder flow in 
comparison with the straight square cylinder (for similar blockage ratio of 1/8) and the 
circular cylinder flows (in free stream) is slightly shorter for Reynolds number below 
Re ! 34.7 and 11.6, respectively and larger above these values.

4.4 Drag Coefficients

One of the most important parameters for flow around an obstacle is the drag coefficient 
Cd. The drag exerted on the obstacle is made up of two components: viscous drag and 
pressure drag. Non-dimensional form of each of these components is defined as viscous drag 
coefficient (Cdf = Fdf / (1/2! Umax

2b)) and pressure drag coefficient (Cdp = Fdp / (1/2! Umax
2b)) 

and therefore the total drag coefficient is Cd = Cdf + Cdp. Figure 5(b) depicts the variation of 
these components against Reynolds number. As expected, in the steady state flow region, due 
to diminishing effect of viscous force, the values of the individual and total drag coefficients 
decrease with an increase in Re. These reductions of drag coefficients are greater at low 
Reynolds numbers.
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Figure 5: Variation of recirculation length (a) and drag coefficients (b) versus Reynolds number



13th Annual & 2nd International Fluid Dynamics conference                                                                                                                          
Fd2010-26-28 Oct. Shiraz University 

Shiraz Iran

11

4.5 Local Nusselt Number

Owing to the underlying inherent differences, the results for the two boundary conditions 
are discussed separately.

4.5.1 Constant Wall Temperature (CWT) Condition

The variation of the local Nusselt number on the top surfaces of the cylinder (the down 
surfaces are symmetric) at Re = 1, 10, 20 and 40 for various values of Prandtl numbers is 
shown in figure 6. As expected, the Nusselt number increase with an increase in the Reynolds 
and/or Prandtl number. These plots show a sharp increase in the values of Nusselt numbers at 
each corner of the cylinder due to the large temperature gradient normal to the surface of the 
obstacle. On each surface of the cylinder, there exist a minimum as the Nusselt number 
increases again at the next edge. With increasing the value of the Reynolds number, this 
minimum goes near the top edge on the rear surface because of the changes that occurs in the 
mechanisms of heat transfer by the stronger vortices.

4.5.2 Uniform Heat Flux (UHF) Condition

Representative results on the variation of local Nusselt number for top half of the inclined 
square cylinder along the cylinder surfaces for this case are shown in figure 7 for ranges of 
Reynolds and Prandtl numbers. These plots show qualitatively similar features as seen in 
figure 6 for the CWT condition. There are only smoother increases in the values of the 
Nusselt numbers at the cylinder edges.
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Figure 6: Local Nusselt number variation along the cylinder top surfaces (specified by its non-dimensional x-
distance) for Re = 1, 10, 20 and 40 and Pr = 1, 10, 50 and 100 for CWT case.
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Figure 7: Local Nusselt number variation along the cylinder top surfaces (specified by its non-dimensional x-
distance) for Re = 1, 10, 20 and 40 and Pr = 1, 10, 50 and 100 for UHF case.

4.6 Average Nusselt Number

The average Nusselt number for front surface (Nuf) and rear surface (Nur) of the square 
cylinder is obtained by averaging the local Nusselt number over the each face of the obstacle.
Finally, as the heat transfer area is the same for each surface the square obstacle, the overall 
average Nusselt number is simply the mean of the surface average values of the Nusselt 
number corresponding to the four surface of the cylinder. The average Nusselt number can be 
used in process engineering design calculations to estimate the rate of heat transfer from the 
cylinder in the CWT case, or to estimate the averaged surface temperature of the cylinder for 
the UHF condition.

a

Re

N
u

0 10 20 30 400

4

8

12

16

20

24
b

Re

N
uf

0 10 20 30 400

6

12

18

24

30

36
c

Re

N
ur

0 10 20 30 400

5

10

15
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different Prandtl numbers: (■) Pr = 0.7, (▲) Pr = 50 and (▼) Pr = 100 for constant temperature 

(filled symbols) and uniform heat flux (opened symbols).
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4.6.1 Constant Temperature Case

Figures 8(a)-(c) show the variation of the average Nusselt number for the square cylinder 
and each of its faces with Reynolds number for various Prandtl numbers. This figure shows 
that the average Nusselt number for the front surface is higher than the rear one. It is also seen 
that the average Nusselt number for the cylinder and each of its faces increases with 
increasing Reynolds and/or Prandtl numbers.

Correlating the present heat transfer results by simple expressions is convenient, especially 
for engineering applications. Further data analysis exhibits the classical dependence of the 
Nusselt number on Prandtl number, i.e. Nu α Pr1/3. So, the important parameter for process 
engineering design calculations, the Colburn j-factor, is usable here:

(8)  

 1/ 3

Nu
j

Re Pr


The main use of this parameter lies in the fact that it affords the possibility of reconciling 
the results for a range of values of Reynolds and Prandtl numbers into a single curve. The

Colburn j-factor is represented as a function of Reynolds number at different Prandtl 
numbers for the constant temperature case in figure 9(a). The variation is seen to be 
approximately linear on a logarithmic scale. The j-factor decreases with Reynolds number. 
The best single non-linear curve fit for all the results presented in figure 9(a) with a range of 
conditions 1 ≤ Re ≤ 40 and 0.7 ≤ Pr ≤ 100 can be obtained as:

(9)  0.60910.8818j Re 

This correlation admits the low rate of heat transfer at low Reynolds numbers and the high 
rate at high Reynolds numbers. This expression has average and maximum deviations of the 
order of 4% and 11%, respectively.

4.6.2 Uniform Heat Flux Case

The variation of average Nusselt number for the inclined square cylinder, and each of its 
faces, as a function of Reynolds number for different values of Prandtl numbers for the UHF 
case is shown in figures 8(a)-(c). The dependence of the average Nusselt number on the 
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Figure 9: The Colburn j factor versus Reynolds number at various Prandtl numbers for constant wall 
temperature (a) and uniform heat flux (b) cases.
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Reynolds and Prandtl numbers seen in these figures is qualitatively similar to that observed 
for the condition of constant wall temperature. As expected, the mean values for the cylinder 
and its faces are somewhat larger than those obtained for the CWT case at the same values of 
Pr and Re.

Figure 9(b) also shows the functional dependency of the j-factor on the flow and heat 
transfer parameters for the UHF condition. These results are also seen to collapse on one 
curve for various Prandtl numbers in the steady flow regime. The reasonable correlation of 
numerical data for the range of conditions 1 ≤ Re ≤ 40 and 0.7 ≤ Pr ≤ 100 is given by:

(10)  0.58160.9399j Re 

This shows average and maximum deviations of 4% and 12%, respectively. Attention to 
equations (9) and (10) also confirms the higher average Nusselt number for the UHF 
condition than that for CWT condition.

It should be implied that these correlations allow an easy calculation of the Nusselt number 
even when there is moderate variations in the values of the Prandtl numbers due to 
temperature dependency of thermo-physical properties. Since the average Nusselt number is 
related to the third root of the Prandtl number (Nu α Pr1/3), even a 100% growth in the Prandtl 
number value will change the Nusselt number only by 26% [13]. So from an engineering 
application viewpoint, the assumption of the constant thermo-physical properties is not as 
poor as it seems.

5. CONCLOSIONS

A lack of accurate and detailed data was found in the literature for the steady flow and heat 
transfer around a confined inclined square cylinder which initiated the present work. In this 
study, the effects of Reynolds and Prandtl numbers on the flow and heat transfer 
characteristics of Newtonian fluids across the inclined square cylinder confined in a two-
dimensional channel has been investigated for varying range of Reynolds number 
(1 ≤ Re ≤ 40) and Prandtl number (0.7 ≤ Pr ≤ 100) for the constant wall temperature (CWT)
and uniform heat flux (UHF) conditions on the surface of cylinder. The effects of these two 
types of thermal boundary conditions on the Nusselt number have also been studied. 
Generally, the use of UHF boundary condition yields slightly higher values of the Nusselt 
number than those for CWT case under identical conditions of Re and Pr. The difference in 
the computed values of the average Nusselt number for the two types of thermal boundary 
conditions increases as the Reynolds or Prandtl number is increased. It is so worthwhile to 
have some idea about the detailed flow structures in order to analyze the heat transfer results. 
For this reason, the streamline and vorticity contours are also presented. It is observed that the 
flow separates from the cylinder side corners in the range of 5 ≤ Re ≤ 10. The length of 
recirculation zone is also seen to increase almost linearly with the Reynolds number. The 
local Nusselt number at each corner of the inclined square cylinder and the average Nusselt 
number increase with an increase in the Reynolds number and/or Prandtl. Finally, simple new 
heat transfer correlations have been obtained for both the thermal boundary conditions.
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