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Abstract– In this paper, a new approach is proposed for designing the nearly-optimal three dimen-
sional symmetric shapes with desired physical center of mass. Herein, the main goal is to find such a
shape whose image in (r, θ)-plane is a divided region into a fixed and variable part. The nearly optimal
shape is characterized in two stages. Firstly, for each given domain, the nearly optimal surface is deter-
mined by changing the problem into a measure-theoretical one, replacing this with an equivalent
infinite dimensional linear programming problem and approximating schemes; then, a suitable func-
tion that offers the optimal value of the objective function for any admissible given domain is defined.
In the second stage, by applying a standard optimization method, the global minimizer surface and its
related domain will be obtained whose smoothness is considered by applying outlier detection and
smooth fitting methods. Finally, numerical examples are presented and the results are compared to
show the advantages of the proposed approach.
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1. INTRODUCTION AND THE PROBLEM STATEMENT
Optimal shape design (OSD) is an application-oriented subject whose applications can be found in

many engineering branches. For instance, we can address some of them in mechanical engineering, civil
engineering, marine industry and chemical engineering (see [1–4]). We remind that symmetry is an
important cue for many applications in the real world, including object alignment, recognition, segmen-
tation, computer graphics and geometric processing [5]. In recent years, symmetry information has been
used to detect local features in 2D images [6], to guide reconstruction of 2D curves and range scans with
missing data [7], to rotate shapes into a canonical coordinate frame [8]. Moreover, the concept of “center
of mass” has a wide range of applications in science and technology; it is an important point on an aircraft
which significantly affects its stability. For instance, to ensure that an aircraft is stable, the center of mass
must fall within specified limits. If the center of mass is ahead of the forward limit, the aircraft will be less
maneuverable [9]. As an example nozzles are a sample of symmetric shapes which have specific center of
mass. In this paper, we will investigate a more general design of rotating objects which are independent of
their physical system.

It is necessary to remind that until now, two kinds of measures have been used in solving shape opti-
mization problems: Young measure and Radon measure. There is an extensive literature, about Young
measures that some of the recent ones can be denoted as [10–13]. Also, many applications are arisen in
models of elastic crystals [14], [15]) and optimal design (see [16–18]).

On the other hand, in 1986, Rubio in [19] introduced an embedding process for solving optimal control
problems governed by ordinary differential equations, using positive Radon measures. Then, it was
employed to obtain the optimal control for systems governed by partial differential equations (like [20],
[21]). In sequence, since 1999 until now, with the help of this method, different cases of the optimal shape
design problems have been solved (a brief report of these kinds of work was given in [22] and we can also
emphasize on [23–27]. Unfortunately, very limited number of articles and books about three-dimensional
shape optimization are available; however, there are many industrial objects can not be demonstrated via

1The article is published in the original.
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two-dimensional tools and a three-dimensional design is needed. Also, 3D optimal shape design methods
are problematic because of the following reasons:

(i) The main challenge of most optimization methods is the description of the performed shapes in
terms of design variables ([28]).

(ii) Mesh deformation (such as finite element method) was a big difficulty for 3D optimal shape design
problems since after a few iterations, the mesh may no longer be feasible. It may cause divergence of the
optimization algorithm (see [28]).

(iii) In contrast with 2-D shape optimization problems, parameterizations techniques for 3D problems
describe the shape or the shape modifications with a large set of constraints which causes some problems
in the convergence of the optimization process (see [29]).

(iv) Iterative methods, such as the level set method, require the objective function to be decreased; but
its main drawback was the possibility of falling into a local (and non-global) minima if the initialization
was too far from a global minimum [30].

The main goal of this paper is to extend the last above-mentioned method for designing unknown gen-
eral symmetric three dimensional optimal shape with an unknown image and a given center of mass. We
emphasize that this method does not depend on an initial shape or value and can also cover the above
mentioned difficulties. Here, the unknown bounded shape С is symmetric in cylindrical coordinate with
respect to (r, z)-plane and has a specified center of mass placed on the top of the plane (r, θ). The bound-
ary of the shape includes the unknown surface S with equation z = f(r, θ) and its unknown image, in (r, θ)
plane is the region D (see Fig. 1); that is, a bounded region with a piecewise-smooth, closed and simple
boundary ∂D which consists of a fixed and a variable part (see Fig. 2). Due to the nature of the surface S
(smooth and continuous), we assume that the function z = f (r, θ) is absolutely continuous.

The variable part of ∂D is located in α1 ≤ θ ≤  region, where the value α1 is given. Also, the fixed part,

h(θ), is located in 0 ≤ θ ≤ α1 region (h(θ) is a given continuous function and τ(θ) is unknown). We intend
to find the nearly optimal unknown surface S and the nearly optimal unknown region D simultaneously,
so that a given performance criteria is minimized on С. Furthermore, in general, a curve can be approxi-
mated by broken lines so that τ(θ) (and hence D) can be approximated with a number M of its points (cor-
ners of broken lines belonging to τ(θ)) which will be called the M-representation of D. For a fixed number M,
without losing generality, the points in the M-representation set can have the fixed θ-components like θi =

, i = 1,2,…, M (see Fig. 3). Hence, each admissible M-representation set called DM can be characterized
by M variables r1, r2, …, rM. Therefore, the variable part of ∂D is defined by a finite set of M real variables
(r1, r2, …, rM).

From a mathematical point of view, we introduce the set of admissible surfaces as follow:

where the region D ⊂ R2 and ∂D are defined as follow:
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also,  is the given center of mass which is defined as follow [31]:

The goal is to find an admissible surface which minimizes the given functional I(S, D). So, the prob-
lem, that we call (P1), can be classified as follow:

(1.1)

where f0 is a piecewise continuous function on S. In the first step of the solution, we will obtain a solution
of (P1) for a fixed admissible domain in class DM. So, we will be able to approximate the value of I(S, D)
for any given domain D ∈ DM that includes fixed boundaries of D and the unknown boundary which is

approximated by the broken lines [32]. Thus, if M → ∞, a sequence { } of optimal domains tends to a
domain D [32] (see Fig. 3).

It is necessary to remind that, in determining domain D ∈ DM, in addition to the number of boundary
points (θi, ri), their suitable distribution on the unknown boundary is also of significance. This fact will be
considered by assigning, in a prescribed manner, constant values to θ1, θ2, …, θM (direction) from a dense
subset (see Fig. 3).

Since dσ = rdrdθi [31], one can state the problem (P1) mathematically in cylindrical

coordinates as:

(1.2)

It is difficult to identify a classical solution for the general case of problem (1.2); thus usually it has been
tried to find a weak solution of the problem, which is more applicable in our work. The main idea in this
replacement, is to change the problem into the variational form and an equivalent optimal control problem
to the original problem is obtained. Then, a measure theoretical approach and two stage approximations
are used to convert the optimal control problem to a finite dimensional LP. The solution of this LP is used
to construct an approximate solution for the original problem.

2. TRANSFERRING THE PROBLEM INTO AN OPTIMAL CONTROL PROBLEM

In order to transfer the optimal shape design in variational form, we need to define some fundamental
concepts. First, to simplify the calculations, as in Cartesian coordinates, we have [31]:
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therefore, in cylindrical coordinates, we have:

Without loss of generality, we can assume zmin = 0; hence,

Similarly, we have

To solve the optimal shape problem (P2), we transfer the problem into a control one by defining artifi-
cial controls ui: D → R, i = 1–3 as:

(it will be observed that, control function  is needed in the definition of function Ψ).
Definition 1. We assume that control functions u1, u2, and u3 belong to the bounded sets U1, U2, and

U3 ⊂ R and the path function is z = f(r, θ) : D ∈ DM → A ⊂ R. We define Ω = D × A × U1 × U2 × U3.
Clearly, these controls are not independent of each other and the relationship between them should be

considered somehow (especially when in numerical schemes). For this reason, let G(θ, r, z) be a continu-
ous function on D × A, we have:

Regarding the density property of polynomials in C(D × A), one may select functions as polynomials
in C(D × A). Without loss of generality, these functions can be selected as the multiplication of different
powers of θ, r, z.

We consider a sphere В so that D × A ⊂ В. We show the space of real-valued and continuously differ-
entiable functions with the first and the second order continuous derivatives bounded on В up to С' (В).

Definition 2. The quaternary P = (z, u1, u2, u3) is called admissible if:
(1) The function z = f (r, θ) is absolutely continuous.
(2) The control functions u1, u2, and u3 are Lebesgue measurable functions and take their values on the

bounded sets U1, U2, and U3. The set of all admissible quaternaries is denoted by W and now problem (P3)
can be rewritten as follows:

(2.3)
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where in the above, f1 (r, θ, z, u1, u2, u3) =  .

Definition 3. In cylindrical coordinates, considering the unit vectors , the curl of a function g ∈
C(R3) is defined in [33] as:

Since in (P1), the surface equation is z – f(r, θ) = 0, we have:

The following conditions put on the functions as well as sets will serve two important purposes. First,
they are reasonable conditions which are usually met when considering classical problems. Second, they
will allow us to modify these classical problems and these modifications are more advantageous. In this
manner, to ensure the admissibility of quaternary P = (z, u1, u2, u3) obtained after solving the problem, we
need to define new functions (see [19, 34, 35]).

We consider set of functions ψ(r, θ) that is infinitely differentiable inside region D(say $(D0)) and has
compact support. Then, we assume ϕ (r, θ, z) = zψ(r, θ) (we will introduce function ψ(r, θ) in the next
part). Hence, we define function Ψ so that the absolute continuous condition of path function can be
imposed on the problem. Now, we suppose F = (ϕr, ϕθ, ϕz), then:

Since the surface equation is z = f(r, θ), one can conclude that ∇f = , then, according to

Stoke’s theorem in cylindrical coordinate, we have [15]:

because ψ has a compact support on D, the right hand side of the above integral is equal to zero. Therefore,
we define:

Since each differentiable function with finite derivatives satisfies the Lips-chitz condition and is abso-
lutely continuous, [36], function ψ(r, θ) is absolutely continuous with respect to each of the independent
variables r and θ. Also, with the assumption of the admissibility of P, z is absolutely continuous and con-
trols u1, u2, u3 are lebegue measurable; then, function zψ(r, θ) is also absolutely continuous (see [36]).
So, function Ψ(θ, r, z, u1, u2, u3) on the Ω is integrable.
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Based on similar reasons for the choice ψ(r, θ), the third class of functions in C'(B) is selected as the
functions that only depend on the independent variables θ and r; we show the set of these functions with
C1(B). In this case, we have:

where af is the lebesgue integral of function f(r, θ) on region D.

3. EXPRESSING THE PROBLEM IN THE MEASURES SPACE

In general, the set of all admissible quaternary, W, may be empty or may not contain an optimal qua-
ternary. Even if set W is nonempty and a minimizing quaternary does exist in it, it may be difficult to char-
acterize the optimal solution. Necessary conditions are not always helpful because the information they
give may be impossible to interpret. Also, the optimal quaternary may be very difficult or impossible to
estimate numerically. Of course, in a given classical problem, the set of admissible pairs is fixed. If we
somehow add elements to it, we change the problem and consider a new one. This is precisely our inten-
tion; the basis of this metamorphosis is the fact that an admissible quaternary can be considered as some-
thing else; that is, a transformation can be established between the admissible quaternary and other math-
ematical entities. Thus, for any P = (z, u1, u2, u3) ∈ W, we define the following positive linear functional:

(3.4)

This transformation is an injection (see Section 6). Now, based on the Riesz representation theorem
(see [36]), since positive linear functional can be represented by a positive regular Borel measure (called
Radon measure), there exists a positive radon measure, say μp, so that:

Therefore, problem (P3) with respect to measure μp is defined as (P4):
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following problem:
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We define the set of all positive Radon measures on Ω satisfying (3.6) as Q. Also we assume that M+(Ω)
be the set of all positive Radon measures on Ω. Now, if we topologize space M+(Ω) by the weak*-topology,
it can be seen that Q is compact. According to this topology, functional I: Q → R defined by (3.6) is a linear
continuous functional on a compact set Q; thus, it attains its minimum on Q (see Theorem III.1 in [19]),
and so the measure theoretical problem which consists of finding the minimum of functional μ(f1) over
the subset of M+(Ω) possesses a minimizing solution, μ*, in Q. Problem (3.6) is an infinite dimensional
LP problem.

It can be concluded from the above discussions that the problem has an optimal solution in Q. But, it
is difficult to determine the exact solution because of the infinite number of constraints and the dimension
of the solution space. There is still no known and effective method for solving such infinite measure pro-
gramming problems without making use of approximation. Therefore, we are looking for an approxima-
tion close to the optimal solution. In the next step, we will try to apply suitable approximations which are
acceptable. In the next section, we are mainly interested in approximations such as those discussed in [19].

4. APPROXIMATION
It is possible to approximate the solution of infinite linear programming (3.6) by the solution of a finite

one. First, we consider the minimization of (3.6) not only over set Q, but also over a its subset called
Q(M1, M2, M3, M4, M5) and defined by only a finite number of constraints to be satisfied. This will be
achieved by choosing countable sets of functions whose linear combinations are dense in the appropriate
spaces and then by selecting a finite number of constraints. Let sets {xl : l ∈ N}, {fsk : s, k ∈ N}, {Gi ∈ C(D ×
A) : i ∈ N} be total sets of functions in the appropriate spaces. We choose a finite number of functions in
each of these sets; then, problem (3.6) in an approximation form would be presented as:

(4.7)

According to Proposition III.1 of [19], if M1, M2, M3, M4, M5, and M6 tend towards infinity, the optimal
solution of problem (4.7) will converge to the optimal solution of problem (P5) and so these two have the
same problem. Although the constraints are finite, the solution space is still infinite. To overcome this
problem, we introduce a second phase of approximation.

To determine μ*, we are mainly interested in approximations such as the one discussed in [19]. By
regarding the result of Roseribloom’s theorem [37], the optimal measure μ* has the form μ* =

, where δ is a unitary atomic measure with the support of the single points qj which belong to
a dense subset of Ω and βj is a nonnegative real coefficient. So, the problem was changed into a nonlinear
One whose unknowns are βj and the supporting points qj for j = 1, 2, …, N. Moreover, regarding the last
set of equations, the number of constraints is still infinite. The idea of converting the problem into a finite
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linear programming could be approached by putting a discretization on Ω with nodes qj = (rj, θj, zj, u1j,
u2j, u3j) ∈ Ω in a dense subset of Ω and by selecting a finite number of constraints. Therefore, the solution
of (4.7) can be approximated by the following linear programming problem with positive variables βj.

(4.8)

One may say that, at the moment, we are faced with a large scale problem which may have its own diffi-
culties. But, comparing to the original problem, we have to emphasize that we have obtained something
more useful. First, we do not know any thing about the existence of the solution of (1) and the manner of
obtaining it. But, now, we indicate that the solution exists (Theorem III.1 in [19]) and it could be charac-
terized approximately well by solving a simple finite linear programming problem (4.8). Although by using
this method, the dimensions of the problem sometimes could slightly be enlarged for the sake of very pre-
cise computations, there are two points worthy of notice which reveal the problem will not suffer from
curse dimension or complexity even in high dimensions. First, due to the particular choice of fsk functions
and the right-hand-side value of the second class of constraints, a large number of coefficients matrix ele-
ments are zero. This reduces the computations and causes the coefficients matrix to be a kind of sparse.
Second, the existence of methods such as the interior point in solving linear programming problems for
sparse matrices makes the process of solving the problem easier by decreasing the consumed time as well
as the complexity of the computations because in such a case, the number of iterations and the consumed
time will be reduced ([38]). In addition, it is noteworthy to remind, that several works have been done in
this regard till now (e.g. [35, 20, 25]) and even numerical experiences of these papers indicate that under
normal conditions, the problem can easily be solved using popular software such as MATLAB, Maple and
the modified Simplex method.

5. THE NEARLY OPTIMAL SHAPE

In the present section, we develop a procedure for finding the optimal value of the same functional over
the set of all admissible domains DM, indeed, we intend to solve the mentioned problem in (1.1) by deter-
mining the nearly optimal surface and its related nearly optimal image to obtain the minimum value of the
performance criterion I(S, D) on W. Each domain D ∈ DM, as explained, is determined by a set of finite
points (θm, rm), m = 1, 2, …, M. Thus, for a given D ∈ DM, by solving (4.8), the nearly optimal value for
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I(β*, D) is found as a function of variables r1, r2, …, rM. Consequently, one can define the following vector
function:

The global minimizer of vector function J, say (r1, r2, …, rM), can be identified by using a suitable search
technique (like Honey-Bee-Method [39]). Such method normally needs an initial value (initial domain)
for starting the process of minimization. Each time the algorithm calculates a value for J, finite linear pro-

gramming problem (4.8) should be solved; thus, the optimal coefficients  are characterized. Whenever
it reaches the minimum value, the minimizer  (optimal domain D*) and therefore its asso-
ciated nearly optimal surface have been obtained. So, the nearly optimal domain and the optimal surface
are determined at the same time. This is one of the main advantages of this method. In the next section,
we summarize the procedure of constructing nearly optimal control functions u1, u2, u3 and path function
z derived from a solution of linear programming problem (4.8). We summarize the procedure of con-
structing nearly optimal control functions u1, u2, u3 and path function z derived from a solution of linear
programming problem (4.8): after solving problem (4.8), we identify the indices n such that the compo-
nents  of the extreme point are positive and the corresponding value θn and rn associated with them
make θ = θn, r = rn, u1 (r, θ) = u1n, u2 (r, θ) = u2n, u3 (r, θ) = u3n, and z(r, θ) = zn as mentioned in [19].
Then, we have nearly optimal points (θn, rn, zn) and by using curve fitting tool box of MATLAB software,
we fit the surface on these points in Cartesian coordinates. In this step, there might be some outliers
because of employing approximation method which make the shape non-smooth.

Suppose, for a given data set, except a few of its members, the rest belong to special groups (clusters).
A few number of members which do not belong to any cluster are called outliers [40]. Also, even if an out-
lier is a valid data point and not in error, it may deliver unstable results [41–43]. A variety of methods are
available to detect outliers. But, in general, all these methods could be classified into two categories. In
the first category called labeling method, each data is assigned a label consistent or outlier. In the second
one which is called method of scoring, a number is assigned to any data (called inconsistency factor). The
second kind is more f lexible because one can choose a threshold value for the incompatibility factors. In
this paper, in numerical examples 1 and 2, we used LoOP algorithm (Local Outlier Probability), which is
located in the second group of methods, to reject the outliers and achieve a more suitable and flatter shape [43].
In this method, we reject the data whose corresponding outlier factors are more than 0.4.

6. A NOTE ON CONVERGENCE
In this section, we investigate the convergence of the new proposed method according to the fol-

lowing 3 propositions and a theorem.
Proposition 1. The transformation P → Λp of an admissible quaternary in W into the linear mapping Λp

defined in section (3) is an injection.
Proof. We must show that if P1 ≠ P2, then  ≠ . Indeed, if P1 = (z1, u11, u21, u31) and P2 = (z2, u12,

u22, u32) are different admissible quaternary, a continuous positive function F can be constructed on C(Ω)
so that, the right-hand side of  corresponding to P1 and P2 are not equal. Then, the linear functional
are not equal.

Proposition 2. Let Q(M1, M2, …, M5) be a subset of M+(Ω) consisting of all measures which satisfy con-
straints (4.7). As M1, M2, …, M5 tend to infinity, then,

Proof. Regarding the density properties of the selected subspaces of appropriated spaces C'(B), the
proof is similar to the proof of Proposition III.1 in [19].

Proposition 3. Measure μ* in set Q(M1, M2, …, M5) at which the function μ → μ(f1) attains its minimum
has the following form

where δ is an atomic measure,  ∈ Ω and  ≥ 0, j = 1, 2, …, N.
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Proof. The above-mentioned proof is similar to that of Proposition III.2 in [19].

Theorem 4.1. Let the search technique give the global minimizer D* for J and N, M1, M2, ..., M6 → ∞;
then, the obtained domain and its related nearly optimal surface defined by (4.8), (D*, S*) are the optimal
solution of (P1).

Proof. To prove this theorem, we first prove that problem (4.8) is equivalent to Problem (P1) when N,
M1, M2, …, M5 → ∞.

We remind that, problem (P2) is the same as problem (P1) which was presented in cylindrical coordi-
nates. Then, extra constraints were added and problem (P3) was resulted; these constraints are necessary
for a better communication between control variables and they also show the admissibility of the quater-
naries. On the other hand, according to Proposition 1, problem (3.5) equals problem (2.3). Furthermore,
since set W of admissible quaternary can be considered (by means of the injection transformation in Prop-
osition 1) as a subset of Q, the minimization of problem (3.6) is global; that is, the global minimum of
problem (3.5) can be approximated well [19]. Also, as mentioned in Section 3, problem (3.6) has at least
one solution. Now, according to Propositions 2 and 3, when M1, M2, …, M5 → ∞, problem (4.8) is equiv-
alent to (3.6). Also, with respect to Proposition III.3 and Theorem III.1 in [19], problem (4.8) has a solu-
tion and this solution converges to the solution of problem (3.6) when N is sufficiently large. So, problem
(1.1) has at least one solution and its solution can be determined with the method presented in section 5.

Now, if I(β*, D*) is not an optimal solution of (4.8), then, there will be a domain and its related vector β
where D' ∈ DM and I (β, D') < I(β*, D*). Let β' be the optimal vector for problem (4.8) defined with respect
to the given domain D'; then, I (β', D') ≤ I(β*, D') < I(β*, D*); that is J(D') < J(D*). Let  be
the representation of domain D' ∈ DM; thus, we have  < . This inequality
states that  is not the global minimizer of J, which is a contradiction. Thus I(β*, D*) is the
optimal value for functional I and (S*, D*) is nearly optimal.

6.1. Total Sets

To restrict the number of constraints (3.6), we considered countable sets of functions whose linear
combinations are dense in the specific space. In this section, we attempt to introduce some suitable cases
for such sets. In this manner, we explain how one can choose total sets for the constraints of (4.8).
Infinitely differentiable functions consist of functions such as exponential and trigonometric functions.
However, exponential function can never be zero. Therefore, we make use of trigonometric functions
whose linear combinations can make Fourier series for each periodic arbitrary function. We choose these
functions in the following way and we consider ’s as:

Obviously, the linear combinations of these functions are uniformly dense in the space C1(Ω), infinitely
differentiable inside region D and has compact support (see [35]).

To be able to characterize the optimal coefficients of (4.8), an arbitrary domain will be divided into
finite parts and then, an attempt will be made to determine the nearly optimal surface in each part. In this
manner, a finite number of angles θ = θi, i = 1, 2, …, l from the uniform dense subset of [0, α1) (given part

of domain D) and θ' = , j = 1, 2, …, M of [α1, π/2) (variable part of domain D) would be considered (see

Fig. 4). Then, domain D can be divided into s = l + M parts by half-lines θ = θi and θ' = . Also, the

ith part of D (i = 1, 2, …, l) can be approximated by the sector Ri = , when θi ≤ θ ≤ θi + 1,

the jth part (j = 1, 2, …, M) can be approximate by the sector  =  when  ≤ θ ≤  and (r1, r2, …,

1 2
' ' '( , , ..., )Mr r r

1 2
' ' '( , , ..., )MJ r r r 1 2

* * *( , , ..., )MJ r r r

1 2
* * *( , , ..., )Mr r r

ψ '
ji

ψ = − θ πθ
ψ = − θ πθ

ψ = − θ πθ πθ

1

2

3

( ( ))(sin( ));
( ( ))(cos( ));

( ( ))(cos( )sin( )).

i

i

i

r h i
r h i

r h i i

θ'
j

θ'
j

+θ + θ 1( ) ( )
2

i ih h

'
iR ++ 1

2
i ir r θ'

i +θ 1
'
i



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 57  No. 7  2017

A THEORETICAL MEASURE TECHNIQUE 1235

rM) is the optimal value in , say Dj. Then, if the number of angles is sufficiently large, the
union of Dj’s can approximate D arbitrarily. So, we consider fsk as follow:

where J1s and J2k are determined as follow:

J1s =  and J2k =  for given part of region D and J1s =  and

J2k =  for the unknown part. Hence:

7. NUMERICAL EXAMPLES

In this section, by giving some numerical examples, we examine the efficiency of the method explained
in the previous sections.

Example 1. A simple computation shows that point (9/5, 0, 0) is the center of mass for the generated
rotating shape (around x-axis) by the generator curve у = , 0 ≤ x ≤ 3. To have a comparison, hereby,
we intended to find the surface S with image D with unknown boundary τ(θ) and the initial and the final
points (0,1) and (3,2) so that point (9/5, 0, 0) is its center of mass. We consider the initial curve τ(θ)-as
the line that possesses points (0,1) and (3,2) i.e., у = 1/3x + 1. So, in polar coordinate we have τ(θ) =

. For this reason, we choose: zmin = 1, zmax = 2, , ,

, .
To discretize Ω = D × A × U1 × U2 × U3, we chose M = 16 × 6 × 10 × 83 point in these set by selecting
1. 8 points in U1 for fθ: –3/2, –15/14, –9/14, –3/14, 3/14, 9/14, 15/14, 3/2;
2. 8 points in U2 for fr: 0, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, 1;
3. 8 in U3 for frθ: –1, –5/7, –3/7, –1/7, 1/7, 3/7, 5/7, 1;
4. 16 angles in [0, π/2] for θ:

0, π/30, 2π/30, 3π/30, 4π/30, 5π/30, 6π/30, 7π/30, 8π/30, 9π/30, 
10π/30, 11π/30, 12π/30, 13π/30, 14π/30, π/2;

5. 10 value in A [1, 2] for z: 1, 10/9, 11/9, 12/9, 13/9, 14/9, 15/9, 16/9, 17/9, 2.
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To set up the linear programming problem (4.8), for the first set of constraints, we select M1 = 2 and
M2 = 2 and choose:

, l = 1, 2;

, k = 1, 2.

For М3 = 9, we selected:

Choose fsk(θ, r) with M4 = 8 and M5 = 3 (by selecting 1/3 , 2/3 ,  in variable region of D and 1/3Ri,
2/3Ri, Ri in given region for 0 ≤ θ ≤ π/2). So, the linear programming problem by 40 constraints and
491520 variables with a constant objective function was set up.

In 2012, Fakharzadeh et al. [32] dealt with the best standard algorithm to identify the optimal solution
for an OSD sample problem governed by an elliptic boundary control problem. Their goal in that paper
was to examine and evaluate six different methods according to their ability to find optimality of function.
In the mentioned paper, some references (references related to applications or discussions) were given for
each method. They conducted a computational examination of several existing derivative free optimiza-
tion methods to apply solution procedure of OSD problems by shape-measure technique. These methods
consist of Random search, Nelder-Mead algorithm, Hook and Jeeves algorithm, Simulated annealing
algorithm, Genetic and Honey bee mating optimization algorithm. The results showed that Random
search and Honey bee mating.optimization algorithm are more appropriate for use in shape measure
method than other algorithms [32]. In this manner, we use Honey Bee Mating optimization algorithm
(HBM) to obtain the optimal value of J(r1, r2, …, rM) and the modified Simplex method from MAT-
LAB 7.13 to obtain the optimal value of I(β, D).

After solving this problem by 50 iterations, we obtained optimal points (θn, rn, zn) corresponding to
optimal coefficients  > 0 in the manner explained in section 4. Then, we fitted a surface on these points
with and without rejecting the outliers by using related MATLAB’s toolbox. Figures 5 and 6 show the
obtained domain and the rotating surface. In addition, due to the symmetry, we can obtain the rotating
surface around x-axis by using generating curve τ(θ).

Figure 7 shows the obtained nearly optimal surface without rejecting outliers by normal curve fitting
procedure from MATLAB and Fig. 8 shows this nearly optimal surface by rejecting outliers with same pro-
cedure. As is shown in the figures, in Fig. 7, there are more outlier points which are not laid on the fitted
surface.

θ= θ − θ2
1 (2 ) ( )

nl n n n n nG z r r f

θ= θ − θ2 2 2 2
2 (2 ) (2 )

nk n n n n n nG z r r z f

ψ = − θ πθ
ψ = − θ πθ

ψ = − θ πθ πθ =

1

2

3

( ( ))(sin( )),
( ( ))(cos( )),

( ( ))(cos( ))(sin( )), 1, 2, 3.

i n n n

i n n n

i n n n n

r h i
r h i

r h i i i

'
iR '

iR '
iR

β*
n

Fig. 5. Nearly optimal domain D in
Example 1.
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In Fig. 9, the obtained curve with new method is marked in red and the curve у =  is shown in
dashed line. The unknown boundary has been approximated by 7, 9, and 12 points and in each case,
L2 error has been calculated using formula ([44])

and L∞ error has been calculated using formula

Tables 1–3 show the values of yopt, у =  at the same x as well as the mentioned errors for these
three cases.

+ 1x
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Fig. 8. Nearly optimal surface in Example 1 with rejecting outliers.
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Fig. 9. Nearly optimal domain D and curve у =  in Example 1.
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Table 1. The values of yopt and у =  at the same x (7 points)

x yopt y = L2 error L∞ error

3.0000 2.0000 2.0000 0.6628 –0.5196
0.7183 0.7913 1.3108
0.6533 0.9263 1.2825
0.6279 0.1732 1.2758
0.3897 0.0090 1.1788
0.2764 1.1022 1.1297
0.0000 1.0000 1.0000

+ 1x

+ 1x
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As observed, by increasing the number of unknown boundary points, both errors have decreased and
hence, the accuracy will increase.

Example 2 (cited from [45, p. 123]). The aim is to find a nearly-optimal surface so that the boundary
of D passing the points (0, 1, 0) and (3, 2, 0) and the surface has the minimum area with the center of mass
at point (1.9, 0, 0). Thus, the performance criterion is the minimization of  with the additional con-

dition  = 0 and the other conditions which are similar to those of Example 1.

σ∫S d

−∫ ( )
C

x x dV

Fig. 10. Nearly optimal domain D
in Example 2.
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Table 2. The values of yopt and у =  at the same x (9 points)

x yopt y = L2 error L∞ error

3.0000 2.0000 2.0000 0.2455 0.1293
1.8552 1.5973 1.6897
1.2418 1.3680 1.4973
0.9118 1.2929 1.3827
0.6437 1.2028 1.2821
0.4005 1.0371 1.1834
0.2676 1.0670 1.1259
0.1234 0.9996 1.0599
0.0000 1.0000 1.0000

+ 1x

+ 1x

Table 3. The values of yopt and у =  at the same x (12 points)

x yopt y = L2 error L∞ error

3.0000 2.0000 2.0000 0.1631 0.0597
2.1854 1.8053 1.7847
2.1000 1.7857 1.7607
1.8085 1.7186 1.6758
1.800 1.7118 1.6733
1.500 1.6295 1.5811
1.3018 1.4708 1.5172
1.2000 1.4473 1.4832
0.9000 1.3783 1.3784
0.6502 1.3209 1.2846
0.6000 1.3093 1.2650
0.0000 1.0000 1.0000
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Fig. 11. Rotating surface with gen-
erator curve τ(θ) in Example 2.
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In the same way as in Example 1, Figs. 10 and 11 show the obtained domain and the rotating surface
by the fitting procedure using MATLAB 7.13 software. Also, Figs. 12 and 13 show the obtained surface by
the fitting procedure without and with rejecting the outliers. The value of optimal objective function is
23.6332 and the approximated area of rotating surface around x axis by using generating curve τ(θ), equals
to 31.7330. Also, comparison the results with the analytical solution from [45] indicates the acceptable of
the new method. As is shown in the figures, in Fig. 12, there are more outlier points which are not laid on
the fitted surface.

8. CONCLUSION
In this paper, a novel practical approach was proposed to obtain the solution of 3D symmetric shape

optimization problems with a given center of mass. First, the problem was transferred into an optimal con-
trol frame in a variational representation. Then, in an algorithmic path, the nearly optimal shape was con-
structed by transferring the problem into a measure space, extending the underlying space, applying two
approximation steps and obtaining the optimal surface and its image from the solution of an appropriate
finite linear programming problem. Moreover, the optimal value for the general form of the objective
function and the nearly optimal shape were determined in an easy way just by applying a standard search
technique (by supposing an initial image) and also by implementing the Simplex algorithm perfectly well.

Additionally, in this method, a smoother shape was obtained by rejecting the outlier data and smooth
fitting procedures. The method has many advantages including the automatic existence theorem, the lin-
earity of the solution method even for extremely nonlinear problems, the easy imposition of the wished
physical properties for the optimal shape and also the generality and simplicity in application for different
purposes and systems. Especially, it is practical and accurate enough for systems with nonlinear terms
while, accuracy can be improved as much as desired. Furthermore, in the future studies, we will try to
solve mechanical problems in 3 dimensions by this new method.
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