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Abstract
In this paper, two approaches based on evolutionary algorithms are applied to solve a
multi-objective optimal control problem governed by semilinear parabolic partial differ-
ential equations. In this approach, first, we change the problem into a measure-theoretical
one, replace this with an equivalent infinite dimensional multi-objective nonlinear program-
ming problem and apply approximating schemes. Finally, non-dominated sorting genetic
algorithm and multi-objective particle swarm optimization are employed to obtain Pareto
optimal solutions of the problem. Numerical examples are presented to show the efficiency
of the given approach.

Keywords Multi-objective optimal control problem · Pareto solution · Evolutionary
algorithm · Radon measure

Mathematics Subject Classification 90C29 · 49M27

1 Introduction

In real applications, optimization problems are often described by introducing several objec-
tive functions conflicting with each other. This leads to multi-objective or multicriterial
optimization problems; see, e.g., Ehrgott (2005). In the area of control engineering, multi-
objective optimization has been discussed by control engineers [see, e.g., Gambier and
Bareddin (2007)]. These objectives often involve conflict situations of many criteria, such as
control energy, tracking performance and robustness. A suitable introduction on the concepts
of MOOCP may be found in Gambier and Jipp (2011). Also, one may find an overview on
multi-objective optimization applications in control engineering in Liu et al. (2003). Over
the years, some indirect and direct approaches have been presented to extract analytical and
approximate Pareto solutions of MOOCP ’s Yalcin Kaya and Maurer (2014) and El-Kady
et al. (2003). But, these approaches are facing some difficulties. For instance, convexity of
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the objectives is a basic requirement which limits the scope of applications of such methods
Maity and Maiti (2005).

Rubio Rubio (1986) applied the embedding method for solving a control system gov-
erned by an elliptic equation to find the global control for the described system. The history
of these ideas can be find for instance in Rubio (1990). Based on these papers, here we
modify this method. In this manner, we present the problem in a variational form; next, it is
transferred into a new theoretical measure problem in which one unknown positive Radon
measure in a space of measures is sought. Then, a two-stage approximation is used to convert
the optimal control problem to a finite dimensional NLP. The solution of this NLP is used
to construct an approximate solution to the original multi-objective control problem. The
proposed approach is practical and accurate enough and its accuracy can be improved as
far as desired [see Fakharzadeh et al. (2013)]. Due to outstanding abilities of evolutionary
algorithms in finding Pareto solutions of multi-objective optimization problems, two evo-
lutionary algorithms, MOPSO and NSGAII, are employed to find a Pareto optimal control
for multi-objective optimal nonlinear problem Borzabadi et al. (2016) and Kumar and Minz
(2014).

The paper is organized as follows. In Sect. 2, the multi-objective optimal control problem
is formulated and transformed into a multi-objective nonlinear programming problem which
is considered in Sect. 3. In Sect. 4 the algorithm for solving the problem has been presented.
The numerical strategy and results are discussed in Sect. 5.

2 Problem formulation

Let � ⊂ Rd , d ∈ {1, 2, 3}, be an open and bounded domain with Lipschitz continuous
boundary � = ∂�. For given T > 0, we set Q = (0, T ) × � and � = (0, T ) × �. Then,
we consider the following class of multi-objective optimal control problems governed by
semilinear parabolic equations Iapichino and Volkwein (2015):

min J (y, u) =
⎛
⎝
J1(y, u)

J2(y, u)

J3(y, u)

⎞
⎠ =

⎛
⎜⎝

1
2

∫
�

|y(T , .) − y�|2dx
1
2

∫ T
0

∫
�

|y − yQ |2dxdt
1
2

∑m
i=1|ui − udi |2

⎞
⎟⎠ (1)

subject to the semilinear parabolic differential problem

yt (t, x) − �y(t, x) + y3(t, x) =
m∑
i=1

uibi (x) + f (t, x) for (t, x) ∈ Q,

∂ y
∂n (t, s) = 0 for (t, s) ∈ �, y(0, x) = y0(x) for x ∈ �

(2)

and to the bilateral control constraints

u ∈ Uad = {ũ = (ũ1, ..., ˜um) ∈ Rm |uai ≤ ũi ≤ ubi f or 1 ≤ i ≤ m}. (3)

In (1), we assume that y� ∈ L∞(�), yQ ∈ L∞(Q), ud = (ud1 , ..., u
d
m)T ∈ Rm . Further-

more, we suppose that b1, ..., bm ∈ L∞(�), y0 ∈ L∞(�). In (3), let uai , u
b
i ∈ R satisfying

uai ≤ ubi for 1 ≤ i ≤ m.
In general, it is difficult to identify a classical solution for this problem; thus, it has usually

been tried to find a weak solution for it Munch (2009). So, we change the problem into the
variational form as follows.
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Impressing every ϕ ∈ H1
0 (� × (0, T )), the mentioned constraint in (2) and integrating

this formula can be represented as:
∫ T

0

∫
�

(yt (t, x) − �y(t, x) + y3(t, x))ϕ(t, x)dxdt

=
∫ T

0

∫
�

(
m∑
i=1

uibi (x) + f (t, x)

)
ϕ(t, x)dxdt

(4)

According to Green’s inequality
∫

�

�y(t, x)ϕ(t, x)dx −
∫

�

y(t, x)�ϕ(t, x)dx =
∫

�

(
∂ y

∂n
ϕ − ∂ϕ

∂n
y

)
dS

and by using initial conditions, we have
∫

�

�y(t, x)ϕ(t, x)dx =
∫

�

y(t, x)�ϕ(t, x)dx

then, equation (4) can be rewritten as:
∫ T

0

∫
�

(yt (t, x) + y3(t, x))ϕ(t, x)dxdt −
∫ T

0

∫
�

y(t, x)�ϕ(t, x)dxdt

=
∫ T

0

∫
�

(
m∑
i=1

uibi (x) + f (t, x)

)
ϕ(t, x)dxdt

(5)

Because the objective function J1(y, u) is independent of time, we can write it as follows:

1

2T

∫ T

0

∫
�

|y(T , .) − y�|2dxdt

Thus, one can state Problem (1) in this form:

min J (y, u) =

⎛
⎜⎜⎜⎝

1
2T

∫ T
0

∫
�

|y(T , .) − y�|2dxdt
1
2

∫ T
0

∫
�

|y − yQ |2dxdt
1
2

m∑
i=1

|ui − udi |2

⎞
⎟⎟⎟⎠

s. t .
∫ T

0

∫
�

(yt (t, x) + y3(t, x))ϕ(t, x)dxdt −
∫ T

0

∫
�

y(t, x)�ϕ(t, x)dxdt =
∫ T

0

∫
�

(
m∑
i=1

uibi (x) + f (t, x)

)
ϕ(t, x)dxdt .

(6)

To solve (6), we change the problem and consider a new one with a different formulation.

3 Embedding the solution space

The solutionmethodwhich is based on an embedding process involves several stages to set up
a nonlinear multi-objective programming problem whose solution converges to the solution
of the original problem [see Rubio (1986)]. This is one of the outstanding advantages of this
method. First, a measure theoretical approach and a two-stage approximation are used to
convert the optimal control problem to a finite dimensional NLP. The solution of this NLP
is used to construct an approximate solution to the original control problem. The proposed
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approach is practical and accurate enough and its accuracy can be improved as far as desired
[see Fakharzadeh et al. (2013)].

By considering function y as the trajectory and (ui , yt ) as the control vector, problem
(6) will be a multi-objective control problem. For solving the problem and expressing its
method, we need to present the following definition. In this manner, suppose that the domain
of control functions yt and ui are represented by Ẏ and Ui , respectively.

Definition 3.1 vector p = (y, yt , ui ) is called admissible when it satisfies the following
conditions:

1. The control functions (yt , ui ) are bounded and continuous and take their values on com-
pact sets Ẏ and Ui ⊂ R ;

2. y is the bounded solution of the semilinear parabolic system (2);

The set of all admissible vectors are denoted by F . If the system is controllable, set F is
non-empty (this can be seen in Rubio (1986), for instance).

We define D = [0, T ] × X1 × X2 × Y × Ẏ × YT (the specific domain for variable
t, x1, x2, y, yt , y(T ), respectively ). In general, finding admissible vector p may be diffi-
cult or estimating its numerical value may not be possible. If set F gets bigger through a
method, these problems will be solved. The basis of this change is on the fact that there is a
one-to-one correspondence between admissible vectors and a set of positive Radonmeasures.
Therefore, an admissible vector (t, x1, x2, y, yt , y(T )) ∈ F introduces the following linear,
positive and bounded functional �p(F) on C(D) as:

�p(F) =
∫ T

0

∫
�

F(t, x1, x2, y, yt , y(T ))dxdt ∀F ∈ C(D); (7)

Problem (6) can be expressed on the basis of functional �p for each p ∈ F .

min J (y, u) =

⎛
⎜⎜⎜⎝

1
2T �p(|y(T , .) − y�|2)

1
2�p(|y − yQ |2)

1
2

∑m
i=1 |ui − udi |2

⎞
⎟⎟⎟⎠

s. t . �p((yt (t, x) + y3(t, x))ϕ(t, x)) − �p(y(t, x)�ϕ(t, x))

= �p(
∑m

i=1 uibi (x) + f (t, x))ϕ(t, x)).

(8)

Based on Riesz representation theorem (Rudin 1983), there is a unique measureμp onC(D)

corresponding to bounded and linear functional �p , so that:

�p(F) =
∫
D
Fdμp ≡ μp(F), ∀F ∈ C(D);

Therefore, one can transfer problem (8) into a measure space by

(t, x1, x2, y, yt , y(T )) ∈ F �−→ μp ∈ M+(D).
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where M+(X) is the set of all positive Radon measures on X . So, we have

min J (y, u) =

⎛
⎜⎜⎜⎝

1
2T μp(|y(T , .) − y�|2)

1
2μp(|y − yQ |2)
1
2

m∑
i=1

|ui − udi |2

⎞
⎟⎟⎟⎠

s. t . μp((yt (t, x) + y3(t, x))ϕ(t, x)) − μp(y(t, x)�ϕ(t, x))

= μp(
m∑
i=1

uibi (x) + f (t, x))ϕ(t, x)).

(9)

It was proved by Rubio (1986) that such a transformation is a one-to-one mapping. To
achieve something new, we enlarge the underlying space and consider the problem of finding
a minimizer of measure, say μ∗, on the space of all positive related Radon measures which
are just satisfied to the conditions of (9) and seek to minimize functionals over this new and
larger set called W (not only those that are induced from Riesz Representation theorem);
therefore, our method is somehow global.

The spaceM+(D) is a linear space whichwill become a locally convex topological vector
space when it gives the weak∗-topology.

Even though (9) has an optimal solution Rubio (1986), it is still very difficult to obtain the
exact solution since the underlying spaces are not finite-dimensional, the number of equations
is not finite and the unknowns are measures. Therefore, it is completely acceptable to seek
for a suboptimal solution. Thus, first, by choosing suitable dense subsets in the appropriate
spaces and then, by choosing a finite number of them, the problem is approximated by a
semi-finite nonlinear programming one.

3.1 Identifying a nearly optimal solution

It is possible to approximate the solution of problem (9) by the solution of a finite-dimensional
nonlinear one of sufficiently large dimensions. Besides, by increasing the dimension of the
problem, the accuracy of the approximation can be increased. In the first estimation step,
the problem is turned into a semi-finite non-linear programming one. This will be achieved
by choosing countable sets of functions whose linear combinations are dense in appropriate
spaces and then by selecting a finite number of constraints. Let {ϕ j : j ∈ N } be countable
dense (in the topological convergence sense) sets in space H1

0 (� × (0, T )). By choosing a
finite number of functions in this set, the solution of (9) can be approximated by the solution
of the following one:

min J (y, u) =

⎛
⎜⎜⎜⎝

1
2T μp

(|y(T , .) − y�|2)
1
2μp

(|y − yQ |2)

1
2

m∑
i=1

|ui − udi |2

⎞
⎟⎟⎟⎠

s. t . μp((yt (t, x) + y3(t, x))ϕ j (t, x)) − μp(y(t, x)�ϕ j (t, x))

= μp

(
m∑
i=1

uibi (x) + f (t, x)
)

ϕ j (t, x)), j = 1, ..., M1.

(10)

Because of the density property of the selected sets in (10), its solution tends to the solution
of (9) when M1 → ∞; thus, if number M1 is large enough, (10) is a good approximation of
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our main problem. Now, the number of constraints of the problem is finite but the problem
is still infinite since the underlying space is a subspace of measures.

Rosenbloom Rosenbloom (1956) established the basic theory underlying the solution of
problem such as (10); in particular, he showed that if set W is nonempty, the infimum is
attained at a measure which is a positive combination of finite number measures inM+(D)

which are primary, that is, it takes only values 0 and 1 Alimorad and Fakharzadeh (2017).
FromProposition III.2 in Rubio (1986),μ∗ has the formμ∗ = ∑N

n=1 α∗
nδ(q

∗
n ), where q∗

n ∈ D
and α∗

n ≥ 0 for n = 1, 2, ..., N [here δ(q) is a unitary atomic measure, characterized by
δ(q)F = F(q) for F ∈ C(D) (see Fakharzadeh and Rubio 1999)]. Thus, the measure-
theoretical optimization problem is equivalent to a nonlinear optimization problem in which
the unknowns are coefficients α∗

n and supports {q∗
n }. It would be much more convenient if we

could minimize the functions only with respect to the coefficients α∗
n . However, we do not

know the supports of the optimal measure. This is possible by suitable discretization of space
D into N equal cells (big enough) and then, selection of points {q∗

n }, n = 1, 2, .., N from this
cells. Let D′

� be a countable dense subset of D; then, as a consequence of Proposition III.3
in Rubio (1986), measure μ ∈ M+(D) of the form

∑N
n=1 αnδ(qn) exists such that qn ∈ D′

�.
This leads us to discretize D by nodes qn = (tn, x1n , x2n , yn, ẏn, yTn ), n = 1, 2, .., N lying
in D′

� and solution of problem (10) is obtained by following problem:

min : J (α, u) = min

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2T

n=N∑
n=1

(|yn(T , .) − y�n |2
)

1
2

n=N∑
n=1

(|yn − yQn |2
)

1
2

m∑
i=1

|ui − udi |2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

s. t .
n=N∑
n=1

((
ytn + y3n

)
ϕ j

) −
n=N∑
n=1

(yn�ϕ j )

=
n=N∑
n=1

(
m∑
i=1

uibi (x) + f (tn, x)ϕ j

)
, j = 1, ..., M1.

(11)

Problem (11) is still non-linear because ui are unknown. Now, using two evolutionary algo-
rithms MOPSO and NSGAII for (11), the optimal coefficients (α∗

1 , ..., α
∗
N ) and u∗

i would be
found as explained in the next section.

It is worth mentioning that Galerkin method also expresses an integral problem as a linear
problem. In the method we put forth in this paper, for identifying the unknown function,
support points of functions domain are used. On the other hand, there is no need to define
polynomial functions which are linearly independent. It is worth reminding that by an unsuit-
able definition of polynomial functions in Galerkin method, it is likely that the problem is
unsolvable (Introduction to Galerkin Methods 2016).

4 Algorithm of the approach

To apply the mentioned method for solving Problem (11) practically, here we present an
algorithmic path for the solution procedure.
Initialization step:
I: The given sets [0, T ], X1, X2, Y , Ẏ , YT (the specific domain for variable t, x1, x2, y, yt ,
y(T ), respectively ), which from D are divided into n1, n2, n3, n4, n5 and n6 equal parts;
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so that, the N = n1.n2.n3.n4.n5.n6, the number of 6-dimensional cells in the related
spaces is obtained. Then, in each of these 6-dimensional cells, arbitrary points qn =
(tn, x1n , x2n , yn, ẏn, yTn ) are selected.
II: For fixed numbers M1, we select M1 number of ϕi functions. Now, one is able to set up
the finite nonlinear programming problem (11) with N + m variables and M1 constraints,
which is dependent on the variables ui .

We have proved in Alimorad and Fakharzadeh (2017) the convergence of the above-
mentioned method according to three propositions.

To solve Problem (11) with the help of evolutionary algorithms, first, we consider the
required concepts.

Definition 4.1 (Dominates) Given the vector of objective functions (E1(x, u), ..., Ek(x, u));
we say that candidate (x1, u1) dominates (x2, u2), ( and denote it as (x1, u1) ≺ (x2, u2)), if
for each i ∈ {1, ..., k}, Ei (x1, u1) ≤ Ei (x2, u2) and for some i ∈ {1, ..., k}, Ei (x1, u1) <

Ei (x2, u2).

Definition 4.2 (Pareto Optimal): The pair (x̄, ū) ∈ P is said to be a Pareto Optimal solution
or non-dominated solution if and only if there is not any admissible pair which dominates it.

4.1 NSGAII andMOPSO algorithm steps

An algorithm based on the previous discussions is summarized in this subsection (see Borz-
abadi et al. (2016) for more details):

The objective of the NSGA algorithm is to improve the adaptive fit of a population of
candidate solutions to a Pareto front constrained by a set of objective functions. The algorithm
uses an evolutionary process with surrogates for evolutionary operators including selection,
genetic crossover, and genetic mutation. The population is sorted into a hierarchy of sub-
populations based on the ordering of Pareto dominance. A similarity between members of
each sub-group is evaluated on the Pareto front, and the resulting groups and similarity
measures are used to promote a diverse front of non-dominated solutions Borzabadi et al.
(2016). Non-dominated Sorting Genetic Algorithm (NSGAII) steps are

1. Choose a population of random individuals as (αi0, ...., αin, ui0, ..., uin).
2. Evaluate objective functions values for each individual.
3. Assign ranks based on Pareto dominance.
4. Calculate the crowding distance for each individual.
5. Sort the population in a descending manner.
6. Apply the rules of generating new population (such as crossover ).
7. Obtain Pareto set.
8. Repeat the main step for a predetermined number of iterations.

In PSO, the manipulation of a swarm is different from the evolutionary algorithms, because
it promotes a cooperative model rather than a competitive one. An adaptable velocity vector
is used by PSO, which changes particle position at each iteration of the algorithm. It exploits
information springing from its own previous experiences to move toward the promising
regions of the search space Kumar and Minz (2014). Multi-objective particle swarm opti-
mization (MOPSO) steps are

1. Choose a population of random individuals as (αi0, ...., αin, ui0, ..., uin).
2. Evaluate objective function values for each individual.
3. Assign ranks based on Pareto dominance.
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4. Create grid search space.
5. Select a leader for any particle and update its position.
6. Update the best previous position for any particle.
7. Add a non-dominated population to repository.
8. Delete dominated solutions from archive.
9. Delete extra particles from archive and re-create grid search space.
10. Repeat the main step for a predetermined number of iterations.

Although evolutionary algorithms produce robust solutions, they may not always be glob-
ally optimal. However, their solutions are robust most of the time. In real-life applications,
this can be very valuable because in general, finding good solutions which are highly robust
is very difficult. Multiple runs are required to obtain the Pareto-front by using a scalarization
approach (In each run, a different weight value is considered). However, an evolutionary
algorithm achieves the whole trade-off solutions in just a single run. That being so, choosing
weights in scalarization approach is important in that they can influence the final solution
Eichfelder (2009).

5 Numerical result

Now, to show the efficiency of our method and to explain how it works, we solve a numerical
example with two evolutionary algorithms. It is worth mentioning that this example is taken
from Iapichino and Volkwein (2015) as well as from other studies cited by it in order for the
readers to be able to compare and contrast the two methods.

Example 5.1 In this example, we consider the initial conditions and region � as reference
Iapichino and Volkwein (2015), to examine the new method numerically.

We consider (1) with spatial domain � = (0, 1) × (0, 1) ⊂ R2, final time T = 1,
desired states y� = 0, yQ(t, x) = 100tcos(2x1)cos(2x2), initial condition y0(x) = 0 and
inhomogeneity f (t, x) = 10t x1. Furthermore, for m = 4 each shape function bi (x), i =
1, ..., 4, has the support in a quarter of the domain and ud = (0.5,−4,−0.5, 4)T ∈ R4. Also,
we chose u1 ∈ [−3, 3], u2 ∈ [−8,−1], u3 ∈ [−5,−2], u4 ∈ [−1, 6] (not optimal controls).
To discretize D = [0, T ] × X1 × X2 × Y × Ẏ × YT , we choose M = 103 × 53 points in
these sets:

selecting 10 points in [0, T ] for t as:
0,

1

9
,
2

9
,
3

9
,
4

9
,
5

9
,
6

9
,
7

9
,
8

9
, 1;

10 points in X1 for x1 as:

0,
1

9
,
2

9
,
3

9
,
4

9
,
5

9
,
6

9
,
7

9
,
8

9
, 1;

5 points in X2 for x2 as:

0,
1

4
,
2

4
,
3

4
, 1;

5 values for y as:

0, 0.375, 0.75, 1.125, 1.5;
10 values for yt as:

0, 0.17, 0.34, 0.51, 0.68, 0.85, 1.02, 1.19, 1.36, 1.5;
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5 values in YT for y(T ) as:

0,
1

4
,
2

4
,
3

4
, 1.

Then, M number of nodes (t, x1, x2, y, yt , yT ) ∈ D is introduced and hence all nodes belong
to the dense subset of D).

To set up the linear programming problem (11), we consider ϕ j (t, x) = x1x2(x1 − 1)
(x2 − 1)t ∈ H1

0 (� × [0, T ]) for j = 1, 2, 3. Thus, nonlinear programming problem (11)
having one constraint and M = 103 × 53 variables is set up and solved by NSGAII and
MOPSO algorithms and the optimal points (u∗

i ) and α∗
n > 0 are obtained. The optimal
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Fig. 1 Optimal objective functions with NSGAII algorithm
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Fig. 2 Optimal objective functions with MOPSO algorithm by 10 iterations
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Fig. 3 Optimal objective functions with MOPSO algorithm by 50 iterations

values of the controls, which are obtained from NSGAII algorithm, are u1 = 0.1512, u2 =
−3.8512, u3 = −2.3967, u4 = 3.3548, and from MOPSO algorithm, are u1 = −1.8405,
u2 = −4.3689, u3 = −2.0000, u4 = 4.0000, respectively.

The objective functions are represented in Figs. 1, 2 and 3.
By comparing the results with reference Iapichino and Volkwein (2015), the ability of the

proposed method based on the measures for solving multi-objective nonlinear optimization
control problems is characterized. In this method, we can rewrite the problem of optimal
control as amulti-objective nonlinear programming problem. The new problem can be solved
easilywith the help of innovative algorithms. Thismethod is simpler because it is independent
of the initial value. Moreover, the cpu time is about 0.6 seconds. While in reference Iapichino
andVolkwein (2015) (p. 7), using the Reduced-ordermethod, the time is about 7.3 for solving
this problem.

6 Conclusion

This paper proposed a practical approach for obtaining the solution to general multi-
objective optimal control of semilinear parabolic problems. Compared with other methods,
this approach is more practical since the results are obtained by solving one NLP and it is
independent of the initial value. Furthermore, the new problem can be solved easily with the
help of innovative algorithms. Besides being easier, it takes less time. It is also especially
practical and accurate enough for systemswith nonlinear terms. Also, after approximating the
problem, the more the number of variables and constraints is, the more precise the problem
will be.
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