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1. INTRODUCTION  

Suppose 𝐺 = (𝑉, 𝐸) be a simple and connected 

graph, with vertex set 𝑉 and edge set 𝐸. Let 𝑛 =
|𝑉| and 𝑚 = |𝐸| denote the order and the size of 

𝐺. 

The distance between two vertices 𝑢 and 𝑣 in graph 

is the number of edges in the shortest path and is 

denoted by 𝑑(𝑢, 𝑣). 

Let 𝑒 = 𝑢𝑣 ∈ 𝐸 and define the partition, with 

respect to 𝑒, {𝑁𝑢(𝑒), 𝑁𝑣(𝑒), 𝑁0(𝑒)} of the vertices 

of 𝐺 as follows [1]:  
 

𝑁𝑢(𝑒) = {𝑤 ∈ 𝑉: 𝑑(𝑢, 𝑤) < 𝑑(𝑣, 𝑤)},

𝑁𝑣(𝑒) = {𝑤 ∈ 𝑉: 𝑑(𝑣, 𝑤) < 𝑑(𝑢, 𝑤)},

𝑁0(𝑒) = {𝑤 ∈ 𝑉: 𝑑(𝑣, 𝑤) = 𝑑(𝑢, 𝑤)}.

 

  

Let 𝑛𝑢(𝑒), 𝑛𝑣(𝑒) and 𝑛0(𝑒) denote the number of 

vertices in 𝑁𝑢(𝑒), 𝑁𝑣(𝑒) and 𝑁0(𝑒), respectively. 

Szeged index [2, 3] of 𝐺 is defined by  

𝑆𝑧 = 𝑆𝑧(𝐺) = ∑

𝑒=𝑢𝑣∈𝐸

𝑛𝑢(𝑒). 𝑛𝑣(𝑒). 

The definition of the Szeged index does not take 

into account the vertices at equal distance to 𝑢 and 

𝑣. Szeged star index (or revised Szeged index) of 

𝐺 is defined by [4, 5]:  
 

𝑆𝑧∗ = 𝑆𝑧∗(𝐺) = 

∑

𝑒=𝑢𝑣∈𝐸

(𝑛𝑢(𝑒) +
𝑛0(𝑒)

2
) . (𝑛𝑣(𝑒) +

𝑛0(𝑒)

2
). 

 

Some properties and applications of Szeged index 

and revised Szeged index have been reported in [1, 

6, 7, 8, 9, 10]. 

This paper is organizede in the following way: 

After introduction, the new algorithm for obtaining 

𝑆𝑧(𝐺) and 𝑆𝑧∗(𝐺) is represented in Section 2. In 

Section 3, effectivness of the proposed approach is 

verified by solving numerical examples. Finally, 

conclusions are discussed in the last section.  

 

2. STATEMENT OF THE PROBLEM 

The standard distance matrix or the vertex-distance 

matrix (or the minimum path matrix) of a vertex-

labeled connected graph 𝐺, denoted by 𝐷, is a real 

symmetrix 𝑛 × 𝑛 matrix whose elements are 

defined as:  
 

𝐷(𝑖, 𝑗) = {
𝑙(𝑖, 𝑗)              𝑖𝑓      𝑖 ≠ 𝑗,

0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

 

 where 𝑙(𝑖, 𝑗) is the length of the shortest path, i. e., 

the minimum number of edges, between vertices 𝑖 
and 𝑗 in 𝐺.  

This matrix has been used to generate a number of 

topological indices, e.g., Balaban index [11, 12], 

Wiener index [13, 14], multiplicative Wiener 

index [15, 16, 17] and distance-sum index [18]. An 

efficient algorithm is available for computing the 

vertex-distance matrix of any graph in [19].  

A common way to obtain Matrix 𝐷 is to use 

different powers of adjacency Matrix 𝐴. 

The elements of Matrix 𝐴 give the connections 

between vertices. Powers of adjacency matrix are 

concatenating walks. The 𝑖𝑗 − 𝑡ℎ entry of the 𝑘 −

𝑡ℎ power of 𝐴 counts the number of walks of 

length 𝑘 from vertex 𝑖 to vertex 𝑗, not paths (a walk 

can repeat vertices, while a path cannot). So, to 
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create a distance matrix, we need to iterativerly 

power adjacency Matrix 𝐴, and as soon as a 𝑖𝑗 −

𝑡ℎ element is non-zero, we have to assign the 

distance 𝑘 in distance matrix [20]. 

 

𝐴 =  𝑖𝑛𝑝𝑢𝑡(′𝐸𝑛𝑒𝑡𝑟  𝑡ℎ𝑒  𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑐𝑦 𝑚𝑎𝑡𝑟𝑖𝑥′); 

[𝑛, 𝑛]  =  𝑠𝑖𝑧𝑒(𝐴); 

𝐷 =  𝑁𝑎𝑁(𝑛); 

𝐵 =  𝐴; 

𝑘 =  1; 

𝑤ℎ𝑖𝑙𝑒 𝑎𝑛𝑦(𝑖𝑠𝑛𝑎𝑛(𝐷(: ))) 

(𝐶ℎ𝑒𝑐𝑘 𝑓𝑜𝑟  𝑛𝑒𝑤  𝑤𝑎𝑙𝑘𝑠 𝑎𝑛𝑑  𝑎𝑠𝑠𝑖𝑔𝑛  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) 

𝐷(𝐵 > 0 &  𝑖𝑠𝑛𝑎𝑛(𝐷))  =  𝑘;  

 (𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) 

𝑘 =  𝑘 + 1;  

𝐵 =  𝐵 ∗ 𝐴; 

𝑒𝑛𝑑; 

(𝐷(𝑖, 𝑖) = 2, 𝑖𝑛  𝑡ℎ𝑖𝑠  𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) 

𝑓𝑜𝑟  𝑖 =  1 ∶  𝑛 

𝐷(𝑖, 𝑖) = 0;  

𝑒𝑛𝑑 

 
In all the mentioned methods, matrix 

multiplication is used [19, 20].  

In this paper, a simple and practical method for 

calculating Matrix 𝐷, without the need for matrix 

multiplication will be presented. The advantage of 

this method is that it can be used for finite graphs 

with large dimensions and no matrix storage space 

is necessary. 

Matrix 𝐷 is symmetric with zero diagonal 

elements. Therefore, in the proposed algorithm, 

only the elements above diagonal are calculated. 

Then, the matrix can be obtained by considering 

symmetry. 

 

Algorithm:   

1.  Enter adjacency Matrix 𝐴,  

2.  Consider  

𝐷(𝑖, 𝑗) = 𝐴(𝑖, 𝑗) 

In this step, all paths with lenght of one are defined.  

3.  Now starting from ℎ = 1 and until all the values 

above diagonal of Matrix 𝐷 become non-zero 

for      𝑘 = 1: 𝑛 

for     𝑖 = 𝑘 + 1: 𝑛 

for      𝑗 = 𝑖 + 1: 𝑛 

if      (𝐴(𝑖, 𝑗) = 1    &  𝐷(𝑘, 𝑖) = ℎ   &  𝐷(𝑘, 𝑗) = 0) 

𝐷(𝑘, 𝑗) = ℎ + 1; 

ℎ = ℎ + 1; 
 

Thus, for each ℎ, all paths of length ℎ + 1 will be 

specified simultaneously and if all the values 

above diagonal of Matrix 𝐷 are non-zero, the 

algorithm stops. 

In  [21] theorem 2.2, to calculate 𝑆𝑧∗(𝐺), a formula 

has been presented based on the number of 

vertices, the number of edges, 𝑁𝑢, 𝑁𝑣 and 𝑆𝑧(𝐺). 

To use this formula, we need to calculate 𝑁𝑢, 𝑁𝑣 

and 𝑆𝑧(𝐺). Additionally, in corollary 2.3, for 

values 𝑆𝑧(𝐺) and 𝑆𝑧∗(𝐺), an upper bound has 

been identified on the basis of the number of edges 

and vertices of the graph. In this paper, we will 

present a simple and applicable algorithm for 

calculating 𝑁𝑢, 𝑁𝑣, 𝑆𝑧(𝐺) and 𝑆𝑧∗(𝐺) based on 

distance Matrix D. 

Now, with the help of Matrix 𝐷 and the following 

algorithm, we can simply calculate 𝑆𝑧(𝐺) and 

𝑆𝑧∗(𝐺). 

In [8], values 𝑆𝑧(𝐺) and 𝑆𝑧∗(𝐺) for some specific 

graphs have been achieved based on values of 

Wiener index. However, for calcilating Wiener 

index, we need to identify 𝑑(𝑢, 𝑣) (the number of 

edges on any of the shortest paths joining vertex 𝑢  

to vertex 𝑣) and in this papers, we have presented 

the method of calculating 𝑑(𝑢, 𝑣), [8] has not 

presented a method for calulating it. 

Algorithm for calculating 𝑆𝑧(𝐺) and 𝑆𝑧∗(𝐺): 

Let  
 

𝑆𝑧 = 0,      𝑆𝑧∗ = 0,      𝑛𝑖 = 0,      𝑛𝑗 = 0,      𝑛0 = 0. 
 

For all the values above diagonal of Matrix 𝐷 with 

𝐷(𝑖, 𝑗) = 1, (This means that there is an edge 𝑒 

between vertices 𝑖 and 𝑗):   

1.  for     k = 1 : n  

calculate   𝐷(𝑖, 𝑘) − 𝐷(𝑗, 𝑘),  

2.  If      𝐷(𝑖, 𝑘) − 𝐷(𝑗, 𝑘) < 0, 

𝑛𝑖 = 𝑛𝑖 + 1,  

(Vertices whose distance from vertex 𝑣𝑗 is greater 

than their distance from vertex 𝑣𝑖)  

3.  If      𝐷(𝑖, 𝑘) − 𝐷(𝑗, 𝑘) > 0, 

𝑛𝑗 = 𝑛𝑗 + 1,  

4.  If      𝐷(𝑖, 𝑘) − 𝐷(𝑗, 𝑘) = 0, 

𝑛0 = 𝑛0 + 1,  

We do not need Step 3 to calculate 𝑆𝑧.  
 

 {
𝑆𝑧∗ = 𝑆𝑧∗ + (𝑛𝑖 +

𝑛0

2
) . (𝑛𝑗 +

𝑛0

2
) ;

𝑆𝑧 = 𝑆𝑧 + (𝑛𝑖). (𝑛𝑗).
 

 

3. NUMERICAL EXAMPLES 

In this part, some examples are given to study the 

efficiency of the mentioned method and also to 

compare it with other solving methods [8].  

Example 1: Table (1) shows the values of 𝑆𝑧(𝐺) 

and 𝑆𝑧∗(𝐺) for some graphs, respectively.  

The values obtained for Complete graphs, 

Complete bipartite graphs and Path graphs are the 

same as the results found in [8].  
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The values obtained for Fullerene graphs are the 

same as those of [22]. Therefore, this algorithm is 

practical for calculating 𝑆𝑧(𝐺) and 𝑆𝑧∗(𝐺). 

 
Table  1. The values of 𝑆𝑧(𝐺) and 𝑆𝑧∗(𝐺) for special 

graphs. 

  G   Sz(G)   Sz∗(G)  

Complete graphs Kn   
n(n−1)

2
   

n3(n−1)

8
  

 K7   21   257.25  

 K8   28   448.00  

 K9   36   729.00  

Complete bipartite graphs 

Kn,n  

 n4   n4  

  K7,7   2401   2401  

 K8,8   4096   4096  

 K9,9   6561   6561  

Path graphs Pn   
n3−n

6
   

n3−n

6
  

 P8   84   84  

 P9   120   120  

 P10   165   165  

Fullerene graphs Cn      

 C72   95412   139188  

 C84  163896   222024  

 C96  235236   331260  

 

Example 2. Let  𝐺 =  𝐶𝐶𝐶(𝑛)  be the crystal 

structure of cubic carbon. values of 𝑆𝑧(𝐺) and 

𝑆𝑧∗(𝐺) of 𝐶𝐶𝐶(𝑛) for  𝑛 = 1 and 𝑛 = 2  is equal 

to 𝑆𝑧(𝐺) = 𝑆𝑧∗(𝐺) = 192  and 𝑆𝑧(𝐺) =
𝑆𝑧∗(𝐺) = 4.0704 × 104. The values obtained for 

Crystal Structure Cubic Carbon are the same as 

those of [23]. 

 

 
Fig. 1. Crystal Structure Cubic Carbon CCC (1) in part 

(a) and CCC (2) in part (b). 

 

4. CONCLUSION 

Distance Matrix 𝐷 has been used to generate a 

number of topological indices. Many studies have 

been done to find 𝑆𝑧(𝐺) and 𝑆𝑧∗(𝐺) for different 

graphs. In most cases, the upper and lower bounds 

are specified for these values. In some graphs, such 

as Complete graphs and paths, these values are 

calculated in terms of the number of vertices. In 

this paper, we calculated 𝐷 using adjacency matrix 

and without multiplying the of matrix. Then, using 

Matrix 𝐷, the values of 𝑆𝑧(𝐺) and 𝑆𝑧∗(𝐺) are 

easily obtained. The results are completely 

acceptable and satisfactory to compared the 

mentioned references.   
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 چکیده
 ایداده شده  ییایمیش یکیزیف یهایژگیبا و هامولکول ییایمیش باتیترک یطراح ییشناسا یبرا ینظر یمیهستند که در ش یثابت مولکول ریمقاد کیتوپولوژ یهاشاخص

 یفاصله را برا اتیاز خصوص یبرخ ل،شده در مولکواصلاح Szeged (Sz*(G)) و Szeged (Sz(G)). شاخص شوندیاستفاده م نیمع یکیولوژیو ب ییدارو یهاتیفعال

به  نیکاربرد دارند و بنابرا شتریب ییایمیش یمولکول یساختارها یهایژگیو نییتع یبرا Sz* (G)و  Sz(G)گراف،  هیو نظر یمحاسبات یمی. در شکندینمودارها مشخص م
محاسبه  یبرا تمیالگور نیفاصله ارائه شده است. ا سیماتر جادیا یساده برا تمیالگور کیمقاله،  نی. در ارندیگیمورد استفاده قرار م ییایمیش یطور گسترده در کاربردها

Sz(G)  وSz* (G) .استفاده خواهد شد 
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