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A B S T R A C T

The aim of this paper is to propose an approach to find an optimal surface with a given image
in the cylindrical coordinate so that it overcomes the given obstacles. In addition, several
circumstances, such as the symmetry or asymmetry of the surface are also considered. For
this aim, the obstacle is described by variational inequalities and the problem is expressed as
an optimal control problem by introducing artificial controls. Next, considering a variational
presentation and applying an embedding procedure, the problem is transferred into one whose
unknown is an optimal Radon measure. Hence, the shape design problem is changed into an
infinite linear one whose solution is guaranteed. Then, for each given domain, two stages
of approximation is used to find the optimal surface. Finally, the nearly optimal solution of
original problem is constructed via a finite linear programming whose smoothness is improved
by applying outlier detection and smooth fitting. Numerical examples are presented and the
results are compared.

. Introduction and backgrounds

The obstacle problem is a classic motivating example in the mathematical study of variational inequalities and free boundary
roblems. The problem is to find the equilibrium position of an elastic membrane whose boundary is held fixed, and which is
onstrained to lie above a given obstacle. It is deeply related to the study of minimal surfaces and the capacity of a set in potential
heory as well. Applications include the study of fluid filtration in porous media, constrained heating, elasto-plasticity, optimal
ontrol and financial mathematics [1,2]. In these problems, the solution breaks down into a region where the solution is equal to
he obstacle function, known as the contact set, and a region where the solution is above the obstacle; the interface between the
wo region is the free boundary [3]. To study further details, refer to [4] where the obstacle problem and free boundary problem
re thoroughly reviewed.

Effort has been put into optimizing such problems by transforming them into shape optimization problems based on the idea
ut forward by Young (see [5]) and a famous method of this kind was theoretically established by Rubio [6]. This method has been
xtended and improved by others [7–9]. But, indeed, 3-D optimal shape design (OSD) methods are problematic as explained in [10],
here is a considerable number of methods for designing two-dimensional optimal shapes (2-D OS); the level set method [11],
opological method [12], adaptive wavelet collocation method [13], indirect shooting method [14], mapping method [15] and
umerical methods based on finite element (FEM) and finite difference [16] are some instances.
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Regarding solving optimal control of obstacle problem using direct pseudo-spectral method [17], wavelet-based adaptive mesh
efinement [18] and adaptive wavelet collocation method [19] and also references mentioned in those papers, it could be argued.
nfortunately, only few books and articles are available on three-dimensions (3-D) shape optimization, although some industrial

actors cannot be implemented in a two-dimensions (2-D) manner and a 3-D design is needed.
For creating a 2-D architectural, we have to work out the scale and use old-fashioned techniques to ensure consistency and

ccuracy of measurements. 3-D modeling removes inconsistencies presenting an excellent level of accuracy. Additionally, 3-D
rinting is based on 3-D modeling. Manufacturers will first create 3-D models on a computer. This design will then be sent to the
-D printer as a result of the final product which created. Also, Architects can now create complete structures using 3-D modeling
rograms. In this vein, there is no need for heaps of drawings and materials — simply one 3-D modeling file that showcases every
spect of the building. 3-D modeling is a vital part of the modern filmmaking process too. It has also, played an important role in
dvancing video game graphics.

Moreover, 3-D modeling has helped improve healthcare and medical science significantly and is used in the pharmaceutical
ndustry in a variety of different ways. It can also be used to visualize the human body. Over time, medical students would look
t such things as plastic skeletons and model organs. In this regard, this modeling can be used to help create artificial organs and
edical equipment. For instance, researchers can use modeling programs to create new equipment designs — scalpels and forceps.

urther, chemists can use 3D modeling to look at complex chemical structures of different elements and atoms. They can use it to
isplay practically anything; That is, things that may not be visible by the naked eye.

In this paper, we are going to present a developed version of the works done in [20] for 2-D and in [10] for 3-D space, to
etermine a major class of optimal surfaces for obstacle problems. Indeed, our main purpose is to present a linearization method to
olve the obstacle problem in a 3-D originally. In general, the main steps presented in this paper could be introduced in this way:
irst, we state the classical problems as integral equations. Then, by introducing positive Radon measures, we change the problem
nto measure spaces. In the third step, to overcome problems such as solution existence, we extend the space. In this step, we have an
n infinite linear programming problem (LPP) in measure spaces. Finally, after solving the LPP, path functions and optimal control
re calculated. So far, this method has been presented in one and two-dimensional states and compared to other methods, it has
he main advantages such as solution existence, the new problem’s being linear despite the original problem’s being non-linear, and
inding a general solution for the problem.

In this paper, this method has been extended for solving the optimal shape design problem in 3-D. Using this method, we obtain
he 3-D unknown surface directly. Some of the advantages of this method are: computer programming for this method is easy in that
he problem is approximated by a finite LPP. This method is independent of the prime shape and its run time is short. Furthermore,
t is a general method which is not dependent on the problem type. In other words, it does not require a specific basic information
uch as objective function derivative and constraints. It is possible to make the obtained surface smooth by identifying outlier points
nd then, by curve fitting in the mentioned method.

The paper is organized as follows: the next section is devoted to the statement of the problem. The aim of Section 3 is to recast
he problem into variational form. Section 4 is devoted to approximation schemes. In Section 5, we discuss outlier detection for
moothness. In Section 6, we investigate the convergence of the proposed numerical approach. Some numerical simulations are done
n Section 7 and we conclude with some remarks in Section 8.

. Problem statement in a general form

In free boundary problems, it is often needed to find the boundary of some domains in 3-D space; the obstacle kind of these
roblems can be characterized by a variational inequality, as we will explain while introducing the problem. Based on this fact, the
ain goal, in this section, is to extend the mentioned method in [7] for solving obstacle problems in 3-D space.

Here we are looking for an unknown shape which is bounded and has a specified volume that is placed on top of (𝑟, 𝜃) plane;
ts boundary includes the unknown surface S with supposed equation 𝑧 = 𝑓 (𝑟, 𝜃). Due to the smoothness and continuous nature of
urface 𝑆, we assume that function 𝑧 = 𝑓 (𝜃, 𝑟) is an absolutely continuous function. Also, its image in the plane (𝑟, 𝜃) is the given
egion 𝐷, which is a smooth and simple closed curve. This surface passes through a specified point, say (𝜃0, 𝑟0, 𝑧0), that (𝜃0, 𝑟0) ∈ 𝜕𝐷,
ith a height bounded between 𝑧𝑚𝑖𝑛 and 𝑧𝑚𝑎𝑥 (Understand the issue, we have come up with a hypothetical figure (i.e., Fig. 1)). The

et of all admissible surfaces (or any unknown mentioned shape 𝐶) is introduced as:

𝑆𝐴 = {𝑧 = 𝑓 (𝑟, 𝜃)|𝜕𝐶 = 𝑆 ∪𝐷,∫𝐶
𝑑𝑉 = 𝐿, (𝜃0, 𝑟0, 𝑧0) ∈ 𝑆, (𝜃0, 𝑟0) ∈ 𝜕𝐷, 𝑆 ≥ 𝛹 𝑖𝑛 𝛺0},

here the region 𝐷 ⊂ 𝑅2 and its boundary 𝜕𝐷 are defined as follows (ℎ(𝜃) is a given continuous function):

𝐷 = {(𝑟, 𝜃)|0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑟 ≤ ℎ(𝜃)}, 𝜕𝐷 = {(𝑟, 𝜃)|0 ≤ 𝜃 ≤ 2𝜋, 𝑟 = ℎ(𝜃)}.

lso, the relation 𝑆 ≥ 𝛹 (𝑟, 𝜃, 𝑧), ∀(𝑟, 𝜃, 𝑧) ∈ 𝛺0 means that the surface 𝑆 has to dominate the obstacle 𝛹 in the region shown by 𝛺0;
t is necessary to note that 𝛹 has the property that the obstacle condition could be shown by a variational inequality, or considered
n the discretization or bound conditions schemes of variables or both. The goal of the obstacle problem is to find an admissible
urface 𝑆 ∈ 𝑆𝐴 such that besides overcoming the given obstacle, it is minimizing the specified integral performance over 𝑆. So, for
he given 𝐷, 𝛺, 𝛺0 and 𝛹 , the problem can be classified as:

𝑀𝑖𝑛𝑆∈𝑆𝐴 𝐼(𝑆) = ∫𝑆 𝑓0𝑑𝜎 (1)
2

𝑆. 𝑡𝑜 ∶ 𝑧𝑚𝑖𝑛 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥.
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Fig. 1. A general unknown shape.

The integrand 𝑓0 is supposed to be integrable (or more precisely, differentiable where 𝑑𝜎 is the differential surface area) on a
specified region 𝛺; for instance, if 𝑓0(𝑟, 𝜃, 𝑧) = 1, then we are faced with the obstacle minimum surface problem [2].

We remind that, the condition (𝜃0, 𝑟0, 𝑧0) ∈ 𝑆 can be written as 𝑓 (𝜃0, 𝑟0) = 𝑧0. Moreover, because the shadow of surfaces is
the simple closed curve 𝜕𝐷 in polar plane and (𝜃0, 𝑟0) ∈ 𝜕𝐷, we have 𝑓 (𝜃0, 𝑟0) = 𝑓 (𝜃0 + 2𝜋, 𝑟0); since, the differential surface
area in cylindrical coordinates can be replaced with

√

𝑓 2
𝑟 + 1

𝑟2
𝑓 2
𝜃 + 1𝑟𝑑𝑟𝑑𝜃 [21], the problem can be presented in the new general

mathematical form as:

𝑀𝑖𝑛𝑓𝑟 ,𝑓𝜃 𝐼(𝑓 ) = ∫𝐷 𝑓0(𝜃, 𝑟, 𝑧)
√

𝑓 2
𝑟 + 1

𝑟2
𝑓 2
𝜃 + 1 𝑟𝑑𝜃𝑑𝑟

𝑆. 𝑡𝑜 ∶ 𝜕𝐶 = 𝑆 ∪𝐷,𝐷 ⊂ 𝑅2 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛;

𝑆 ≥ 𝛹 𝑖𝑛 𝛺0 (𝛹 𝑔𝑖𝑣𝑒𝑛, 𝛺0 ⊆ 𝐷)

∫𝐶 𝑟𝑑𝜃𝑑𝑟𝑑𝑧 = 𝐿;

𝑓 (𝜃0, 𝑟0) = 𝑓 (𝜃0 + 2𝜋, 𝑟0) = 𝑧0, 𝑧𝑚𝑖𝑛 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥.

(2)

2.1. Transforming into an optimal control problem

We remind, that without loss of generality, by just moving plane 𝑧 = 0 to the plane 𝑧 = 𝑧𝑚𝑖𝑛, we can assume 𝑧𝑚𝑖𝑛 = 0; then, in
order to simplify the calculations, we can change the volume integrals in (1) into surface integrals as follows:

∫𝐶
𝑟𝑑𝑧𝑑𝑟𝑑𝜃 = ∫ ∫𝐷 ∫

𝑧=𝑓 (𝑟,𝜃)

0
𝑟𝑑𝑧𝑑𝑟𝑑𝜃 = ∫ ∫𝐷

𝑧𝑟𝑑𝑟𝑑𝜃 = 𝐿.

Now, to solve the OS problem (2), we transform the problem into a control one by defining artificial controls 𝑢𝑖 ∶ 𝐷 ⟶ 𝑅, 𝑖 = 1, 2, 3
as follows:

𝑢1 = 𝑓𝜃 , 𝑢2 = 𝑓𝑟, 𝑢3 = 𝑓𝑟𝜃 .

We assume that control functions 𝑢1, 𝑢2 and 𝑢3 take their values in 𝑈1, 𝑈2 and 𝑈3, respectively; also suppose that the path function
is 𝑧 = 𝑓 (𝜃, 𝑟) ∶ 𝐷 ⟶ 𝐴 ⊂ 𝑅 and we define 𝛺 = 𝐷 × 𝐴 × 𝑈1 × 𝑈2 × 𝑈3, where 𝑈 ,

𝑖 s are bounded subsets of 𝑅.

Definition 2.1. We say the quaternary 𝑃 = (𝑧, 𝑢1, 𝑢2, 𝑢3) is admissible if:
(1) function 𝑧 = 𝑓 (𝜃, 𝑟) is absolutely continuous and closed (i.e. 𝑓 (𝜃0, 𝑟0) = 𝑓 (𝜃0 + 2𝜋, 𝑟0) = 𝑧0);
(2) control functions 𝑢1, 𝑢2 and 𝑢3 are Lebesgue measurable;
(3) the set of all admissible quaternaries is denoted by 𝑊 .

Theoretically, the artificial controls are not dependent; this fact should be considered in the solution method, specially when
numerical works must be done. For this regard, let 𝐺(𝜃, 𝑟, 𝑧) be a continuous function on 𝐷 × 𝐴, we have:

𝜕𝐺
𝜕𝜃 = 𝜕𝐺

𝜕𝑧
𝜕𝑧
𝜕𝜃 = 𝜕𝐺

𝜕𝑧 𝑓𝜃 ;
𝜕𝐺
𝜕𝑟 = 𝜕𝐺

𝜕𝑧
𝜕𝑧
𝜕𝑟 = 𝜕𝐺

𝜕𝑧 𝑓𝑟, ∀𝐺 ∈ 𝐶(𝐷 × 𝐴).

Based on what was explained in [10], we can select 𝐺 functions as polynomials due to the density property of polynomials over
vector space 𝐶(𝐷 × 𝐴) and 𝐴 = [0, 𝑧𝑚𝑎𝑥]; without loss of generality, these functions can be defined as the multiplicative different
powers of 𝜃, 𝑟, 𝑧.

Now for the given 𝐷, problem (3) can be rewritten as an optimal control problem:

𝑀𝑖𝑛𝑃∈𝑊 ∶ 𝐼(𝑃 ) = ∫ ∫𝐷 𝑓1(𝜃, 𝑟, 𝑧, 𝑢1, 𝑢2, 𝑢3)𝑟𝑑𝜃𝑑𝑟

𝑆. 𝑡𝑜 ∶ ∫ ∫𝐷 𝑧𝑟𝑑𝑟𝑑𝜃 = 𝐿;

𝑆 ≥ 𝛹 𝑖𝑛 𝛺0
𝜕𝐺
𝜕𝜃 − 𝜕𝐺

𝜕𝑧 𝑓𝜃 = 0, ∀𝐺 ∈ 𝐶 (𝐷 × 𝐴) ;
𝜕𝐺
𝜕𝑟 − 𝜕𝐺

𝜕𝑧 𝑓𝑟 = 0, ∀𝐺 ∈ 𝐶 (𝐷 × 𝐴) ;
( ) ( )

(3)
3

𝑓 𝜃0, 𝑟0 = 𝑓 𝜃0 + 2𝜋, 𝑟0 = 𝑧0;
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𝐵
t
t

where 𝑓1(𝜃, 𝑟, 𝑧, 𝑢1, 𝑢2, 𝑢3) ≡ 𝑓0(𝜃, 𝑟, 𝑧)
√

( 1
𝑟2
𝑢21 + 𝑢

2
2 + 1).

We end this section by reiterating that, as mentioned in [10], the curl of a function 𝑔 ∈ 𝐶(𝑅3) is defined as:

∇ × 𝑔 = 1
𝑟

|

|

|

|

|

|

|

�̂� 𝑟𝜃 �̂�
𝜕
𝜕𝑟

𝜕
𝜕𝜃

𝜕
𝜕𝑧

𝑔𝑟 𝑟𝑔𝜃 𝑔𝑧

|

|

|

|

|

|

|

=
(

1
𝑟
𝜕𝑔𝑧
𝜕𝜃

−
𝜕𝑔𝜃
𝜕𝑧

)

�̂� +
(

𝜕𝑔𝑟
𝜕𝑧

−
𝜕𝑔𝑧
𝜕𝑟

)

𝜃 + 1
𝑟

(

𝜕
(

𝑟𝑔𝜃
)

𝜕𝑟
−
𝜕𝑔𝑟
𝜕𝜃

)

�̂�,

where (�̂�, �̂�, �̂�) is the unit vector in cylindrical coordinates. In [6], a novel method is proposed to approximate the solution of nonlinear
control problems. The proposed approach (embedding method) is practical and accurate enough; moreover, accuracy could be
improved as far as desired. The reader can see [10] for knowing more about the history and applications of this method. Now, in
this paper, we will develop this method to solve the obstacle problem (3). The solution method, which is based on an embedding
process, involves several stages to set up a linear programming problem whose solution converges to the solution of the original
problem. It is one of the outstanding advantages of the method even for strongly nonlinear problems; for more details of the solution
procedure, one can see [6].

3. Embedding procedure

Following the mentioned theoretical measure method, to embed problem (3) in a measure space, admissibility of quaternaries
𝑃 = (𝑧, 𝑢1, 𝑢2, 𝑢3) should be determined in a variational form.

As shown in [10], these properties can be presented by the following variational equalities:

∫ ∫𝑆 ∇ × 𝐹 .𝑛 𝑑𝜎 = ∫ ∫𝐷 ∇ × 𝐹 .∇𝑓 𝑑𝐴 = ∫ ∫𝐷 𝛷
𝑔𝑟𝑑𝑟𝑑𝜃

= 𝑟0(𝜑
(

𝜃0 + 2𝜋, 𝑟0, 𝑓
(

𝜃0 + 2𝜋, 𝑟0
))

− 𝜑
(

𝜃0, 𝑟0, 𝑓
(

𝜃0, 𝑟0
))

) ≡ 𝑑𝛷;

∇ × 𝐹 = ( 1𝑟
𝜕𝜑1𝑧
𝜕𝜃 −

𝜕𝜑1𝜃
𝜕𝑧 )�̂� + (

𝜕𝜑1𝑟
𝜕𝑧 −

𝜕𝜑1𝑧
𝜕𝑟 )�̂� + 1

𝑟 (
𝜕(𝑟𝜑1𝜃 )
𝜕𝑟 −

𝜕𝜑1𝑟
𝜕𝜃 )�̂�.

where

𝛷𝑔 (𝜃, 𝑟, 𝑧, 𝑢1, 𝑢2, 𝑢3
)

≡ 𝜑𝑧𝜃𝑓𝑟 −
1
𝑟
𝜑𝑧𝑓𝜃 − 𝜑𝑟𝑧𝑓𝜃 ,

is a sphere so that 𝐷×𝐴 ⊂ 𝐵, 𝐹 = (𝜑1𝑟 , 𝜑1𝜃 , 𝜑1𝑧 ), 𝜑1 ∈ 𝐷×𝐴 and 𝛷 ∈ 𝛺. Function 𝜑(𝜃, 𝑟, 𝑧) has continuous partial derivatives with
he assumption that controls 𝑢1, 𝑢2 and 𝑢3 are Lebesgue measurable. We remind that variable 𝑟 is nonzero over the surface, because
his variable only takes zero at the origin.

Since the surface equation is 𝑧 = 𝑓 (𝑟, 𝜃), one can conclude that ∇𝑓 = (−𝑓𝑟,
−1
𝑟 𝑓𝜃 , 1); according to Stoke’s theorem, we have:

∮𝜕𝐷
𝐹𝑑𝑟 = ∫ ∫𝑆

∇ × 𝐹 .𝑛 𝑑𝜎 = ∫ ∫𝐷
∇ × 𝐹 .∇𝑓 𝑑𝐴 = ∫ ∫𝐷

𝛶
(

𝜃, 𝑟, 𝑧, 𝑢1, 𝑢2, 𝑢3
)

𝑟𝑑𝑟𝑑𝜃

= ∫ ∫𝐷
1
𝑟
(

2 (𝑟 − 1) 𝑓𝑟𝜓𝜃 + 𝜓𝑓𝜃 + 𝑓𝜓𝜃 + (𝑟 − 1)
(

𝑓𝑟𝜃𝜓 + 𝑓𝜃𝜓𝑟 + 𝑓𝜓𝑟𝜃
))

𝑟𝑑𝑟𝑑𝜃 = 0;

therefore

𝛶
(

𝜃, 𝑟, 𝑧, 𝑢1, 𝑢2, 𝑢3
)

= 1
𝑟
(

2 (𝑟 − 1) 𝑓𝑟𝜓𝜃 + 𝜓𝑓𝜃 + 𝑓𝜓𝜃 + (𝑟 − 1)
(

𝑓𝑟𝜃𝜓 + 𝑓𝜃𝜓𝑟 + 𝑓𝜓𝑟𝜃
))

.

The third class of functions in 𝐶 ′ (𝐵) are selected as functions that only depend on the independent variables 𝜃 and 𝑟; we indicate
the set of these functions with 𝐶1(𝐵). In this case, we have:

∫𝑆
1

√

1
𝑟2
𝑢
2

1
+ 𝑢22 + 1

𝑓 (𝜃, 𝑟) 𝑑𝜎 = ∫𝐷
𝑓 (𝜃, 𝑟) 𝑟𝑑𝑟𝑑𝜃 ≡ 𝑎𝑓 , 𝑓 ∈ 𝐶1 (𝐵)

where 𝑎𝑓 is the integral of 𝑓 (𝜃, 𝑟) on 𝐷.
Let 𝐹 ∈ 𝐶(𝛺) and consider the mapping:

𝛬𝑝 ∶ 𝐹 ∈ 𝐶(𝛺) → ∫ ∫𝐷
𝐹 (𝜃, 𝑟, 𝑧, 𝑢1, 𝑢2, 𝑢3)𝑟𝑑𝜃𝑑𝑟, (4)

for any admissible quaternary 𝑝 = (𝑧, 𝑢1, 𝑢2, 𝑢3).
(1) 𝛬𝑝 is well defined as the integral of function 𝐹 which is continuous and finite.
(2) 𝛬𝑝 is linear, i.e. 𝛬𝑝(𝛼𝐹 + 𝛽𝐺) = 𝛼𝛬𝑝(𝐹 ) + 𝛽𝛬𝑝(𝐺).
(3) 𝛬𝑝 is positive; i.e. if 𝐹 ≥ 0, then 𝛬𝑝(𝐹 ) ≥ 0.
(4) 𝛬𝑝 is continuous [22]; i.e. |𝛬𝑝(𝐹 )| ≤ 𝐾𝑠𝑢𝑝|𝐹 (𝜃, 𝑟, 𝑧, 𝑢1, 𝑢2, 𝑢3)|. Since 𝑅6 is a locally compact space, by the Heine–Borel

theorem [22], 𝛺 is a compact Hausdorff space; therefore, for every given 𝑝, Riesz Representation Theorem [22] indicates uniquely
a positive Radon measure, say 𝜇𝑝 ∈𝑀+(𝛺), so that:

𝛬𝑝(𝐹 ) = 𝐹𝑑𝜇𝑝 ≡ 𝜇𝑝(𝐹 ). (5)
4

∫𝛺
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Therefore, one can embed problem (3) into a measure space by:

(𝑧, 𝑢1, 𝑢2, 𝑢3) ∈ 𝑃 ↦ 𝜇𝑝 ∈𝑀+(𝛺);

where 𝑀+(𝛺) is the set of all positive Radon measures on 𝛺. Regarding the same mentioned difficulties in [6] chapter 2, we shall
now enlarge the underlying space and simply consider all measure 𝜇 in 𝑀+(𝛺) which satisfying the above mentioned properties
not only those indicated by Riesz Representation Theorem); over this new and larger set called 𝑄. So, one can define the theoretical
easure problem (6) instead of the classical problem (3) as follows:

𝐼𝑛𝑓 𝐼 (𝑃 ) = 𝜇
(

𝑓1
)

𝑄
𝑆. 𝑡𝑜 ∶ 𝜇 (𝛷𝑔) = 𝑑𝛷, 𝜑 ∈ 𝐶(𝐷 × 𝐴);

𝜇(𝛶 ) = 0, 𝜓 ∈ ℑ(𝐷0);
𝜇(𝑓 ) = 𝑎𝑓 , 𝑓 ∈ 𝐶(𝐷);
𝜇(𝐺1) = 0, 𝐺1 ∈ 𝐶(𝐷 × 𝐴);
𝜇(𝐺2) = 0, 𝐺2 ∈ 𝐶(𝐷 × 𝐴);
𝜇(𝛹 ) ≤ 𝛽,
𝜇(𝑧) = 𝐿,

(6)

here 𝐺1 =
𝜕𝐺
𝜕𝜃 −

𝜕𝐺
𝜕𝑧 𝑓𝜃 and 𝐺2 =

𝜕𝐺
𝜕𝑟 −

𝜕𝐺
𝜕𝑧 𝑓𝑟 and the fifth condition is obtained from the variational form of the obstacle condition (3).

Existence solution of (6) is proved by putting weak* topology on 𝑀+(𝛺). It may seem that (6) only gives us a lower bound for the
original problem; But apart from the existence and globality of the new solution method, we can come to the following conclusion,
for any 𝜀 > 0 which is proved in [6]; that is for any 𝑃 ∈ 𝑊 and any 𝜀, there exists a measure 𝜇 ∈ 𝑄, such that:

|𝛬𝑝(𝐹 ) − 𝜇(𝐹 )| < 𝑐𝜀, ∀𝐹 ∈ 𝐶(𝛺).

Additionally, there exists an admissible sequence {𝑃𝑗} = {(𝑧𝑗 , 𝑢1𝑗 , 𝑢2𝑗 , 𝑢3𝑗 )} such that 𝐼(𝑃𝑗 ) → inf𝑄 𝜇(𝑓1) when 𝑗 → ∞.
Now, considering the evidence and the method presented in [10], to approximate infinite LP (6) into a finite one. Therefore,

now we are looking for an approximation solution of (6) close enough to the optimal solution.

4. Approximation

Consider the minimization the objective function of problem (6) over a subset of 𝑄, called 𝑄(𝑀1,𝑀2,… ,𝑀6), which is defined by
only a finite number of constraints. This can be achieved by selecting countable sets of functions so that their linear combinations
are dense in the appropriate spaces and then by choosing a finite number of such functions. Let sets {𝜑𝑖 ∶ 𝑖 ∈ 𝑁}, {𝜓ℎ ∶ ℎ ∈
𝑁}, {𝑓𝑠𝑘 ∶ 𝑠, 𝑘 ∈ 𝑁}, {𝐺1𝑡 ∶ 𝑡 ∈ 𝑁} and {𝐺2𝑙 ∶ 𝑙 ∈ 𝑁} be total sets of functions in the appropriate spaces. We choose a finite number
of functions in each of these sets (𝑀1 number of functions 𝜑𝑖, 𝑀2 number of functions 𝜓ℎ, . . . and 𝑀6 number of functions 𝐺2𝑙);
then, in the sense of uniform convergence topology [20], the solution of problem (6) can be approximated by the solution of the
problem generated with this action.

By proposition III.1 in [6], if 𝑀1,𝑀2,𝑀3,𝑀4,𝑀5 and 𝑀6 tend towards infinity, the solution of approximated problem will
converge to that of problem (6). Even though the constraints are finite and the problem is a linear semi-infinite programming problem
(LSIP), the solution space is not finite. Different methods are available to solve a LSIP problem and its dual problem; but, a positive
duality gap may occur between the value of an LSIP problem and its dual [23]. If the set 𝑄 is nonempty, the infimum is attained at a
measure which is a positive combination of a finite number of measures in 𝑀+(𝛺) which are primary, that is, take only values 0 and
1 [24]. From Proposition III.2 in [6], if 𝑓1 is the Lipschitz function and 𝛷𝑔

𝑖 , 𝛶ℎ, 𝑓𝑠𝑘, 𝐺1𝑡 and 𝐺2𝑙 are bounded functions, the optimal
measure 𝜇∗ in the set 𝑄(𝑀1,𝑀2,𝑀3,𝑀4,𝑀5,𝑀6) has the form 𝜇∗ =

∑𝑁
𝑗=1 𝛼

∗
𝑗 𝛿(𝑞

∗
𝑗 ), where 𝑁 =𝑀1 +𝑀2 +𝑀3 +𝑀4 +𝑀5 +𝑀6, with

𝑞∗𝑗 ∈ 𝛺 and 𝛼∗𝑗 ≥ 0 for 𝑗 = 1, 2,… , 𝑁 (here 𝛿(𝑞) is a unitary atomic measure, characterized by 𝛿(𝑞)𝐹 = 𝐹 (𝑞) for 𝐹 ∈ 𝐶(𝛺) (see [20])).
Thus, the measure-theoretical optimization problem is equivalent to a nonlinear optimization problem in which the unknowns are
coefficients 𝛼∗𝑗 and supports {𝑞∗𝑗 }. It would be much more convenient if we could minimize the function 𝜇 ↦ 𝜇(𝑓1) only with respect
to the coefficients 𝛼∗𝑗 , which would result in a finite linear programming problem. However, we do not know the supports of the
optimal measure. The answer lies in approximation of this support by introducing a dense subset in 𝛺; let 𝐷′

𝛺 be a countable dense
subset of 𝛺; then, as a consequence of Proposition III.3 in [6], there exist a measure 𝜇 ∈ 𝑀+(𝛺) with the form ∑𝑀

𝑗=1 𝛼𝑗𝛿(𝑞𝑗 ) such
that 𝑞𝑗 ∈ 𝐷′

𝛺. This leads us to discretize 𝛺 by nodes 𝑞𝑖, 𝑖 = 1, 2,… ,𝑀 lying in a countable dense subset of it and setup the following
finite linear programming:

𝑀𝑖𝑛 𝜇(𝑓1) =
∑𝑀
𝑗=1 𝛼𝑗𝑓1

(

𝑞𝑗
)

𝑆. 𝑡𝑜 ∶
∑𝑀
𝑗=1 𝛼𝑗𝛷

𝑔
𝑖
(

𝑞𝑗
)

= 𝑑𝛷𝑖 , 𝑖 = 1, 2,… ,𝑀1;
∑𝑀
𝑗=1 𝛼𝑗𝛶ℎ

(

𝑞𝑗
)

= 0, ℎ = 1, 2,… ,𝑀2;
∑𝑀
𝑗=1 𝛼𝑗𝑓𝑠𝑘

(

𝑞𝑗
)

= 𝑎𝑓𝑠𝑘 , 𝑠 = 1, 2,… ,𝑀3, 𝑘 = 1, 2,… ,𝑀4;
∑𝑀
𝑗=1 𝛼𝑗𝐺1𝑡

(

𝑞𝑗
)

= 0, 𝑡 = 1, 2,… ,𝑀5;
∑𝑀
𝑗=1 𝛼𝑗𝐺2𝑙

(

𝑞𝑗
)

= 0, 𝑙 = 1, 2,… ,𝑀6;
∑𝑀
𝑗=1 𝛼𝑗𝛹 (𝑞𝑗 ) ≤ 𝛽,

∑𝑀

(7)
5

𝑗=1 𝛼𝑗𝑧𝑗 = 𝐿 .
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Fig. 2. Optimal surface for Example 1 without rejecting the outliers.

n this manner, the optimal solution to (7) tends to the optimal solution of problem (6) where 𝑀1,𝑀2,… ,𝑀6 and 𝑀 tend to
nfinity [25] (in paper [10], the convergence of this method was proved by 3 theorems and the solution algorithm will be presented
n sub-section 4.2). One may say that, at the moment, we are faced with a large-scale problem which may have its own difficulties.

e emphasize that there are two other points worthy of notice. Firstly, given the particular choice of 𝑓𝑠𝑘 functions and the right-
and-side value of the second class of constraints, most of the elements of the coefficient matrix are zero. This, then, reduces the
umber of computations and makes the coefficient matrix sparse. Secondly, methods such as the interior point in solving linear
rogramming problems for sparse matrices simplify the process of solving the problem by limiting the number of iterations and by
aving time [26].

According to [10], we shall explain how one can choose the total set of functions for the constraints in (6). Let set 𝜑𝑖 be such
hat the linear combinations of these functions are uniformly dense (i.e. they are dense in the topology of uniform convergence) in
pace 𝐶 ′(𝐵); these functions can be taken to be monomials in the components of variables 𝑟, 𝜃, 𝑧. For the second set of equations in
6), 𝜓 ,𝑗𝑠 are from the following classes of functions with compact support:

𝜓1 = (𝑟 − ℎ(𝜃))(𝑠𝑖𝑛(𝑖𝜋𝜃)), 𝑖 = 1, 2, 3,…;

𝜓2 = (𝑟 − ℎ(𝜃))(𝑐𝑜𝑠(𝑖𝜋𝜃)), 𝑖 = 1, 2, 3,…;

𝜓3 = (𝑟 − ℎ(𝜃))(𝑐𝑜𝑠(𝑖𝜋𝜃)𝑠𝑖𝑛(𝑖𝜋𝜃)), 𝑖 = 1, 2, 3,…;

these functions are useful as bases for Fourier series, which are usually utilized in analyzing physics and engineering problems. The
linear combinations of this set of functions are dense in the approximated spaces and we choose only 𝑀2 number of them. Also, we
consider the third set of Eq. (7) as follows:

𝑓𝑠𝑘 (𝜃, 𝑟) =
{

1, 𝑖𝑓 𝜃 ∈ 𝐽1𝑠, 𝑟 ∈ 𝐽2𝑘;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where 𝐽1𝑠 = [ (2𝜋)(𝑠−1)𝑀3
, (2𝜋)(𝑠)𝑀3

) and 𝐽2𝑘 = [ (ℎ(𝜃))(𝑘−1)𝑀4
, (ℎ(𝜃))(𝑘)𝑀4

); then

∫ ∫𝐷
𝑓𝑠𝑘 (𝜃, 𝑟) 𝑑𝜃𝑑𝑟 = ∫

𝑟𝑘

𝑟𝑘−1
∫

𝜃𝑠

𝜃𝑠−1
𝑟𝑑𝜃𝑑𝑟 = 1

2
(

𝜃𝑠 − 𝜃𝑠−1
)

(𝑟𝑘2 − 𝑟𝑘−12) ≡ 𝑎𝑓𝑠𝑘 .

Although these functions are not continuous, the linear combinations of them can efficiently and properly approximate any functions
in 𝐶(𝛺) (see [22]).

5. A note on convergence

In this section, we investigate the convergence of the new proposed method according to the following 3 propositions. It is
mentioning that in order for problem (1) to be convergent, the functions involved should be continuous and control variables are
bounded.

Proposition 5.1. The transformation 𝑃 → 𝛬𝑝 of an admissible quaternary in 𝑊 into the linear mapping 𝛬𝑝 defined in (4) is an injection.

Proof.We must show that if 𝑃1 ≠ 𝑃2 then, 𝛬𝑝1 ≠ 𝛬𝑝2 . Indeed, if 𝑃1 = (𝑧1, 𝑢11, 𝑢21, 𝑢31) and 𝑃2 = (𝑧2, 𝑢12, 𝑢22, 𝑢32) are different admissible
quaternary, a continuous positive function 𝐹 can be constructed on 𝐶(𝛺) so that, the right-hand side of 𝛬𝑝𝑖 corresponding to 𝑃1
6

and 𝑃2 are not equal. Then, the linear functionals are not equal.
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Proposition 5.2. Let 𝑄(𝑀1,𝑀2,… ,𝑀6) be a subset of𝑀+(𝛺) consisting of all measures which satisfy constraints (7). As𝑀1,𝑀2,… ,𝑀6
tend to infinity, then,

𝐼𝑛𝑓 𝜇(𝑓1) ⟶ 𝐼𝑛𝑓 𝜇(𝑓1).
𝑄(𝑀1,𝑀2,… ,𝑀6) 𝑄

Proof. Regarding the density properties of the selected subspaces of appropriated spaces 𝐶 ′(𝐵), the proof is similar to the proof of
Proposition III.1 in [6].

Proposition 5.3. Measure 𝜇∗ in set 𝑄(𝑀1,𝑀2,… ,𝑀6) at which the function 𝜇 → 𝜇(𝑓1) attains its minimum has the following form

𝜇∗ =
𝑀
∑

𝑗=1
𝛼∗𝑗 𝛿(𝑞

∗
𝑗 )

where 𝛿 is an atomic measure, 𝑞∗𝑗 ∈ 𝛺 and 𝛼∗𝑗 ≥ 0, 𝑗 = 1, 2,… , 𝑁 .

Proof. The above-mentioned proof is similar to that of Proposition III.2 in [6].
Now, we prove that problem (7) is equivalent to problem (1) when 𝑀,𝑀1, 𝑀2,… ,𝑀6 → ∞.
We remind that, problem (2) is the same as problem (1) which was presented in cylindrical coordinates. Then, extra constraints

were added and problem (3) was resulted; these constraints are necessary for a better communication between control variables and
they also show the admissibility of the quaternaries. On the other hand, according to Proposition 5.1, problem (3) equals problem (2).
Furthermore, since set 𝑊 of admissible quaternary can be considered (by means of the injection transformation in Proposition 5.1)
as a subset of 𝑄, the minimization of problem (6) is global; that is, the global infimum of problem (6) can be approximated well [6].
Also, problem (6) has at least one solution. Now, according to Propositions 5.2 and 5.3, when 𝑀1,𝑀2,… ,𝑀6 ⟶ ∞, problem (7)
is equivalent to (6). Also, with respect to Proposition III.3 and Theorem III.1 in [6], problem (7) has a solution and this solution
converges to the solution of problem (6) when 𝑀 is sufficiently large. So, problem (1) has at least one solution and its solution can
be determined with the method presented in the next section.

6. Algorithm (solution procedure)

To apply the mentioned method for obstacle problems to achieve the optimal surface, some other actions must be performed as
well. Here, we present an algorithmic path for determining the solution procedure.

Step (1) Statement of the classical problem to integral equations: Using relationship (4), all conditions as well as the objective
function of (3) and the obstacle condition are expressed in the form of integral relationships over region 𝐷.

Step (2) Transferring the problem to control problem and measures: By defining artificial controls based on the obligatory
function presentation of the unknown optimal surfaces, first the problem is transferred to an optimal control one. Then, according
to the Riesz Representation Theorem, by a one-to-one correspondence, the problem is embedded in a subset of positive Radon
measures. Then, the underlying space is enlarged (as explained in Section 3) and we setup problem (6).

Step (3) Identification of the optimal solution: By considering a finite number of constraints in (6), we change the new problem
7

into an approximated finite LP problem by applying the mentioned total sets and discretization schemes. Indeed, the given sets
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Fig. 4. Optimal surface for Example 2 without rejecting outliers.

𝐷,𝐴,𝑈1, 𝑈2 and 𝑈3 are divided into 𝑛1, 𝑛2,… , 𝑛6 equal parts respectively, so that 𝑁 = 𝑛1.𝑛2.𝑛3.𝑛4.𝑛5.𝑛6 number of 6-dimensional cells
in 𝛺 is obtained. Then, arbitrary points 𝑞𝑖 = (𝜃𝑖, 𝑟𝑖, 𝑧𝑖, 𝑓𝜃𝑖 , 𝑓𝑟𝑖 , 𝑓𝑟𝜃𝑖 ) are selected in each of these 6-dimensional cells, respectively.
Now, one is able to set up the finite LP (7) with 𝑁 variables and 𝑀 = 𝑀1 +𝑀2 + (𝑀3 ×𝑀4) +𝑀5 +𝑀6 + 1 constraints. In this
regard, by discretization on 𝐷 and 𝛺0, the obstacle condition 𝑆 ≥ 𝜓 is also considered; this condition is applied if it is necessary.1

Step (4) Identifying the optimal shape: From the solution of the finite LP in the previous step (problem (7)), we identify the indices
𝑛 such that the components 𝛼∗𝑛 of the extreme points are positive; then, the corresponding values 𝜃𝑛 and 𝑟𝑛 associated with them (in
𝐽1𝑠 and 𝐽2𝑘) are introduced, as mentioned in [6]. We then partition this subinterval into further subintervals, one for each index 𝑛
with these properties, of the length equal to the component 𝛼∗𝑛 , and make 𝜃 = 𝜃𝑛, 𝑟 = 𝑟𝑛, 𝑢1(𝑟, 𝜃) = 𝑢1𝑛, 𝑢2(𝑟, 𝜃) = 𝑢2𝑛, 𝑢3(𝑟, 𝜃) = 𝑢3𝑛
and 𝑧(𝑟, 𝜃) = 𝑧𝑛 in these subintervals. These subintervals which partition 𝐽1𝑠 and 𝐽2𝑘 can be put together in any order [25]. In this
regard, some points of the optimal surface are determined.

Step (5) Drawing the optimal surface: To represent the nearly optimal surface, by using the curve fitting (for instance from
toolbox of MATLAB software), we fit a surface to these points in Cartesian coordinates. In this step, due to the employment of the
approximation schemes, some outlier points may occur between the obtained optimal points from Step 4, which may make some
tribulation in the smoothness. Therefore, by using a suitable outlier detection algorithm (below), one can reject the outliers before
the curve fitting, to achieve a more desirable shape.

6.1. Outlier detection among nearly optimal points

Suppose we have a data set such that except for a number of its members, all of them belong to special groups, or clusters. Those
members which do not belong to any cluster are called outliers or in a very simple terms, an outlier refer to data which have a
meaningful distance from the others (majority data in the data set). Thus, the data set can be divided into two categories: consistent
and outlier data [27]. Outliers are extreme values that lie near the limits of the data range or go against the trend of the remaining
data. Identifying outliers is important because they may represent errors in data entry and also may deliver unstable results [28,29].

A variety of methods are available to detect outliers. But, in general, all methods could be classified into two categories: labeling
methods that each data is assigned one of the two labels consistent or outlier, scoring method that assigns a number (called the
inconsistency factor) to all data. The second kind is more flexible because one can choose a threshold value for the incompatibility
factors. In numerical examples, in order to reduce the approximation error, we used LoOP (Local Outlier Probability) algorithm [29]
to reject the outliers. Here, we reject the data whose corresponding outlier factors are more than 0.4.

Local outlier probability algorithm: Assume 𝑜 ∈ 𝐴 is an arbitrary member of data set 𝐴 and 𝑉 ⊆ 𝐴 includes element 𝑜 that is
called context set. For every natural number 𝑘, context set 𝑉 contains 𝑜 and the 𝑘 number closest points to 𝑜 in other words, if we
assume 𝑑𝑖𝑠𝑡𝑘(𝑜) as distance between 𝑜 and its 𝑘th nearest neighbor; we consider 𝑉 as follow:

𝑉 =
{

𝑠 ∈ 𝐴 ∶ 𝑑 (𝑠, 𝑜) ≤ 𝑑𝑖𝑠𝑡𝑘(𝑜)
}

;

Definition 6.1. For a given set 𝑉 , the standard deviation of 𝑜 from 𝑠 ∈ 𝑉 is defined as follow:

𝜎 (𝑉 , 𝑜) =

√

∑

𝑠∈𝑉 𝑑2 (𝑠, 𝑜)
|𝑉 |

;

1 As mentioned in Section 2, some obstacle conditions could be related to the discretization schemes; for instance if the obstacle is 𝑧 ≥ 𝛽 in 𝛺0, then in
8

discretization, for choosing points (𝜃, 𝑟, 𝑧) when (𝜃, 𝑟) ∈ 𝛺0, 𝑧 is chosen in [𝛽, 𝑧𝑚𝑎𝑥].
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Fig. 5. Optimal surface for Example 2 with rejecting outliers.

Definition 6.2. For a constant parameter 𝜆 = 1, 2 or 3, we define:

𝑃𝑑𝑖𝑠𝑡 (𝜆, 𝑉 , 𝑜) =𝜆 × 𝜎 (𝑉 , 𝑜)

Definition 6.3. Density of the set 𝑉 with respect to 𝑜 is defined as follow:

𝑃𝐿𝑂𝐹 (𝜆, 𝑉 , 𝑜) =
𝑃𝑑𝑖𝑠𝑡 (𝜆, 𝑉 , 𝑜)

𝐸𝑠∈𝑉 (𝑃𝑑𝑖𝑠𝑡 (𝜆, 𝑉 , 𝑠))
− 1

where the denominator means expected (arithmetic mean or center of gravity) is calculated as:

𝐸𝑠∈𝑉 (𝑃𝑑𝑖𝑠𝑡 (𝜆, 𝑉 , 𝑠)) = 1
|𝑉 |

∑

𝑠∈𝑉
𝑃𝑑𝑖𝑠𝑡 (𝜆, 𝑉 , 𝑠) ;

Definition 6.4. A standard deviation for different amounts of 𝑃𝐿𝑂𝐹 (𝜆, 𝑉 , 𝑜) is defined as follow:

𝑛𝑃𝐿𝑂𝐹 = 𝜆.
√

𝐸[(𝑃𝐿𝑂𝐹 (𝜆, 𝑉 , 𝑜))2] = 𝜆
√

| 𝑉 |

(

∑

𝑠∈𝑉
(𝑃𝐿𝑂𝐹 (𝜆, 𝑉 , 𝑜))2

)
1
2

Definition 6.5. Probabilistic factor or LoOP local inconsistency is defined as:

𝐿𝑜𝑂𝑃 (𝑜) = max

{

0, erf

(

𝑃𝐿𝑂𝐹 (𝜆, 𝑉 , 𝑜)

𝑛𝑃𝐿𝑂𝐹 .
√

2

) }

where:

erf (𝑥) = 2
√

𝜋 ∫

𝑥

0
𝑒−𝑡

2
𝑑𝑡.

he flowchart of LoOP algorithm used in this paper is shown in Fig. 9.

. Numerical examples

First, it is worth mentioning that in all present examples, the related LPP has been solved using MATLAB 9.8 software, Revised
implex Method, and the figures have been obtained using MATLAB toolbox for fitting the surface.

Generally, a presented method for solving an obstacle problem should be able to solve the OS problems as well, since if the
bstacle condition in (3) is removed, we face with an OS problem. In this regard, in this section, we present four examples; the first
wo are in the absence of an obstacle, and the next two are in the presence of one. Examples 1 and 2 are well-known examples in
eometry and calculus of variations which are given to examine the efficiency of the new method in 3-D. Example 3 is a general
ngineering problem which has been solved by projection [30], active set strategy [31], multigrid and multilevel [32], level set [2],
iecewise linear system [33], discontinuous Galerkin [34], moving obstacle to approach the contact and the meshless methods [3].
he last one is minimization of the surface area with presence of obstacle.

xample 1. It is a very well-known fact that of all 3-D objects with the same volume, the sphere has the least surface area. To
9

chieve this fact with the new method, we want to minimize the area of an unknown shape with a specified physical volume.



Optik 276 (2023) 170646H. Alimorad and J.A. Fakharzadeh

S
w
o
t

i

f

s

w
c
c
w
t
t

(
h
t

Fig. 6. Optimal surface for Example 3 with obstacle
√

1 − 𝑥2 − 𝑦2.

upposing that the optimal shape is symmetrical with respect to (𝑟, 𝜃)- plane and we specify the optimal points just for 𝑧 > 0; then,
e can later add the symmetrical points at the other side of the plane to obtain the whole optimal shape. We know that the real
ptimal shape is a sphere with radius 2 and volume 16𝜋∕3. Thus, the shadow of the unknown surface is a circle with radius 2 and
he goal is to minimize 𝐼 = ∫ ∫𝑆 𝑑𝜎 = ∫ ∫𝐷

√

𝑓 2
𝑟 + 1

𝑟2
𝑓 2
𝜃 + 1 𝑟𝑑𝑟𝑑𝜃, subject to ∫ ∫ ∫𝐶 𝑑𝑉 = 16𝜋

3 . Provided that there is also a given
fixed point on the boundary of region 𝐷 as (2𝜋, 2, 0.01) = (0, 2, 0.01) and 𝑧𝑚𝑎𝑥 = 2, 𝑧𝑚𝑖𝑛 = 0, 0 ≤ 𝜃 ≤ 2𝜋, 0 ≤ 𝑟 ≤ 2; by trial and error
we choose −1∕5 ≤ 𝑓𝜃 ≤ 1∕5, 0 ≤ 𝑓𝑟 ≤ 1, −1 ≤ 𝑓𝑟𝜃 ≤ 1.

To discretize 𝛺 = 𝐷 × 𝐴 × 𝑈1 × 𝑈2 × 𝑈3, we choose 𝑀 = 16 × 6 × 10 × 83 points in this set as follow; selecting 8 points in 𝑈1 for
𝑓𝜃 as: −3

2 ,
−15
14 ,

−9
14 ,

−3
14 ,

3
14 ,

9
14 ,

15
14 ,

3
2 ; 8 points in 𝑈2 for 𝑓𝑟 as: 0, 17 ,

2
7 ,

3
7 ,

4
7 ,

5
7 ,

6
7 , 1; 8 points in 𝑈3 for 𝑓𝑟𝜃 as: −1, −57 ,

−3
7 ,

−1
7 ,

1
7 ,

3
7 ,

5
7 , 1;

16 angles in [0, 2𝜋] for 𝜃 as: 0, 2𝜋15 ,
4𝜋
15 ,

6𝜋
15 ,

8𝜋
15 ,

10𝜋
15 ,

12𝜋
15 ,

14𝜋
15 ,

16𝜋
15 ,

18𝜋
15 ,

20𝜋
15 ,

22𝜋
15 ,

24𝜋
15 ,

26𝜋
15 ,

28𝜋
15 , 2𝜋; 10 values in 𝐴 = [0, 2] for 𝑧 as:

3
10 ,

44
90 ,

61
90 ,

78
90 ,

95
90 ,

112
90 ,

129
90 ,

146
90 ,

163
90 , 2; 6 values for 𝑟 as: 0.3, 0.6, 0.9, 1.2, 1.6, 2. Then, 𝑀 number of nodes (𝜃, 𝑟, 𝑧, 𝑓𝜃 , 𝑓𝑟, 𝑓𝑟𝜃) in 𝛺 are

ntroduced (we supposed 𝜋 = 3.14159265 and hence all nodes belong to the dense subset of 𝛺).
To set up the linear programming problem (7), for the first set of constraints, with 𝑀1 = 5, we choose: 𝜑1 = 𝜃2𝑟3𝑧, 𝜑2 =

𝜃3𝑟5𝑧, 𝜑3 = 𝜃3𝑟2𝑧, 𝜑4 = 𝜃2𝑟2𝑧2, 𝜑5 = 𝜃2𝑧2; for the second set, 𝑀2 = 9, and :

𝜓1 = (𝑟𝑛 − 2)(sin(𝑛𝜋𝜃𝑛)), 𝜓2 = (𝑟𝑛 − 2)(cos(𝑛𝜋𝜃𝑛));

𝜓3 = (𝑟𝑛 − 2)(cos(𝑛𝜋𝜃𝑛))(sin(𝑛𝜋𝜃𝑛)), 𝑛 = 1, 2, 3;

or the third set, with 𝑀3 = 8 and 𝑀4 = 3 and for the final set 𝑀5 +𝑀6 = 2 we select:

𝐺1𝑙 = (2𝜃𝑛𝑧𝑛𝑟𝑛) − (𝜃2𝑛𝑟𝑛𝑓𝜃𝑛 ), 𝐺2𝑘 = (2𝜃𝑛𝑧2𝑛𝑟
2
𝑛) − (2𝜃2𝑛𝑧𝑛𝑟

2
𝑛𝑓𝜃𝑛 ).

Thus, the related linear programming problem (7) (having 41 constraints and 𝑀 = 16 × 6 × 10 × 83 variables) is solved by using
MATLAB 9.8 software and the optimal points (𝜃∗𝑛 , 𝑟

∗
𝑛 , 𝑧

∗
𝑛) corresponding to the optimal coefficients 𝛼∗𝑛 > 0 are obtained. Next, we

pecify the optimal points (𝑥∗𝑛 , 𝑦∗𝑛 , 𝑧∗𝑛) by means of the relationships 𝑥∗𝑛 = 𝑟∗𝑛𝑐𝑜𝑠(𝜃
∗
𝑛 ) and 𝑦∗𝑛 = 𝑟∗𝑛𝑠𝑖𝑛(𝜃

∗
𝑛 ). For the first case, we fit a surface

to these points without rejecting outliers by using the related MATLAB toolbox. For the second case, we reject the outliers by using
the LoOP algorithm and obtaining the optimal surface by doing the same curve fitting (Figs. 2 and 3). Furthermore, to calculate the
average error between the analytical solution and the obtained result, we use 𝐸𝑟𝑟𝑜𝑟 =

√

1
𝑛
∑𝑛
𝑖=1(𝜌𝑟𝑒𝑎𝑙 − 𝜌𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙)

2
𝑖 (see [2]); where

𝜌𝑟𝑒𝑎𝑙 = 2 (radius of the real sphere) and 𝜌𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 =
√

𝑥2𝑖 + 𝑦
2
𝑖 + 𝑧

2
𝑖 (radius of the obtained sphere passing points (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)). The error

as equal to 0.1898 for the case with existing outliers and 0.0644 for the case without them. Further, correlation between the
omponent 𝑧𝑛 obtained from the solution of the related linear programming (7) and the same component of the real sphere were
omputed. These value were 0.9052 and 0.9661 for the first and the second case, respectively. Moreover, the obtained optimal area
as 23.0892 which was also close to the real area of the hemisphere, i.e. 8𝜋. Considering the amount of average errors as well as

he obtained optimal value of the objective function, the obtained results without outliers were very close to the real solution, and
he amount of error was remarkably smaller.

Observing Figs. 2 and 3, one can conclude that in spite of considering only a finite number of constraints, the presented 3-D
obstacle) shape-measure method successfully solves this example. Also, we see that this new method has small errors and also a
igh correlation between values after rejecting the outliers. Therefore, the obtained results are perfectly satisfactory. Meanwhile,
his example showed the ability of the method in obtaining symmetrical optimal shapes as well.
10
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Fig. 7. Optimal surface for Example 3 with obstacle −𝑥2.

Example 2. According to an old problem, among all shapes having the same area, the sphere has the biggest volume. Therefore,
in this example, we intend to maximize the volume of an unknown shape on the condition that its area is 8𝜋, which is the area of
a hemisphere having a radius of 2. This problem is solved in the same way as explained in Example 1, except that the objective
function was 𝐼 = ∫ ∫ ∫𝐶 𝑑𝑉 with the area constraint ∫ ∫𝐷

√

1
𝑟2
𝑓 2
𝜃 + 𝑓 2

𝑟 + 1 𝑟𝑑𝑟𝑑𝜃 = 8𝜋. We also calculated the average error which
was 0.2487 without rejecting the outliers and 0.1197 with rejecting them; the correlation between the real 𝑧 of the sphere and
its numerically approximation, 𝑧𝑛, were 0.7043 and 0.9301, respectively. Besides, the obtained nearly optimal objective value was
equal to 16 which is close enough to the real value 16𝜋∕3. Figs. 4 and 5 present the surfaces fitted based on the obtained optimal
points.

Example 3. Now, we intend to solve the obstacle problem; this problem is a classic motivating example in the mathematical study
of variational inequalities and free boundary problems. The problem is to find the equilibrium position of an elastic membrane
whose boundary is held fixed, and which is constrained to lie above (or below) a given obstacle [35].

Indeed, we employ the new method for solving the following obstacle problem which has been solved in [2,30–33] through
various methods. To this aim, we consider a region in domain 𝐷 such that the solution to the problem for the points in this region
is a constant, while it has values greater than this constant in the rest of the points:

𝑀𝑖𝑛 𝐸(𝑣) = 1
2 ∫𝛺 |∇𝑣|2𝑑𝑥𝑑𝑦

𝑆. 𝑡𝑜 ∶ 𝑣 ∈ 𝑘, 𝑘 = {𝑣 ∈ 𝐻1
0 (𝛺), 𝑣|𝜕𝛺 = 0, 𝑣 ≥ 𝜓 𝑎.𝑒. 𝑖𝑛 𝛺}.

(8)

Because this example is given from [2], and to compare the results, we choose 𝛺 = [−2, 2] × [−2, 2] and

𝜓 =

{

√

1 − 𝑥2 − 𝑦2 , 𝑓𝑜𝑟 𝑥2 + 𝑦2 ≤ 1;
−1, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒,

with the consistent Dirichlet boundary condition (see [2]). The obstacle is a subset of 𝛺 which is a circle with a radius of 1. In
addition, for the points in this circle, condition 𝑣 ≥ 𝜓 should hold, whereas at the remaining points in 𝛺, 𝑣 can have any value
greater than −1. The analytical value of 𝑣 is equal to:

𝑣∗(𝑥, 𝑦) =

⎧

⎪

⎨

⎪

⎩

√

1 − 𝑥2 − 𝑦2 , 𝑟 ≤ 𝑟∗;

−(𝑟∗)2𝐿𝑛
(

𝑟
𝑅

)

√

1−(𝑟∗)2
, 𝑟 ≥ 𝑟∗,

where 𝑟 =
√

𝑥2 + 𝑦2, 𝑅 = 2 and 𝑟∗ = 0.69799651482, which satisfy (𝑟∗)2(1 − 𝐿𝑛
(

𝑟∗

𝑅

)

) = 1 (see [2] for more details). The aim of this
problem is to find function 𝑣(𝑥, 𝑦) so that 𝐸(𝑣) is minimized. Therefore, by using the introduced method, we consider 𝑧 = 𝑣(𝑥, 𝑦),
11
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Fig. 8. Optimal surface for Example 4 with obstacle.

ewritten the objective function in cylindrical coordinates as 𝐸(𝑣) = 1
2 ∫𝛺(𝑣

2
𝑟 +

1
𝑟2
𝑣2𝜃 + 1)𝑟𝑑𝑟𝑑𝜃 with 𝛺 as the image of the unknown

urface.
To solve this problem, discretization schemes for variables (𝜃, 𝑟, 𝑧) and controls (𝑣𝑟, 𝑣𝜃) have been done like that of previous

xamples and the same functions and software are used as well. We compare our obtained results with the results in [2] where the
ame problem was solved by using the level set method. In that paper, after 7124 iterations, the value of the objective function
urned out to be 3.476744 and the average error between the numerical and analytical values was 0.0273. But in our method, the
btained this average error equals to 0.0164 and the obtained objective function value is 2.6042. It is especially significant that we
olved this problem without considering any initial shape or values and by just completing one iteration (See Fig. 6). Moreover, the
orrelation between numerical and analytical values is 0.9828, which is significant. Also, to have another try for the other type of
roblem (8), we solve this problem using obstacle constraint in the form of 𝛹 = −𝑥2 again. In the same way as mentioned, the new
ethod is successfully applied and the optimal surface, which is located above the obstacle, is displayed in Fig. 7.

xample 4. Here, we express the obstacle problem in such a way that the objective function is the minimization of the surface
rea. The aim is to determine a surface whose area is the least possible which is located on the top of obstacle 𝜓 and also, the
mount of the energy in this area is equal to a constant number 𝛽. Therefore, we have:

𝑀𝑖𝑛 ∶ 𝑍 = ∫𝑆 𝑑𝜎
𝑆. 𝑡𝑜 ∶ 1

2 ∫𝛺 |∇𝑣|2𝑑𝑥𝑑𝑦 = 𝛽;
𝑣 ≥ 𝜓 𝑖𝑛 𝛺

Function 𝜓 has been considered like Example 3. Moreover, for this example, we choose 𝛽 = 2.6042, the optimal value of the energy
function in the first constraint is the optimal amount obtained in the previous example.2

This problem is used in designing solar cells. The optimal surface obtained is given (which has been determined based on
discretization and the method mentioned in Examples 1 and 3) in Fig. 8. As expected, by considering the definition of the objective
function, nearly all of the obtained optimal points located above the obstacle 𝜓 .

8. Conclusion

This paper proposed a novel and practical approach for obtaining the solution to general 3-D obstacle problems. First, the problem
was transferred into an optimal control frame in a variational representation. Then, in an algorithmic path, the nearly optimal shape
was constructed by transferring the problem into a measure space, extending the underlying space, applying two approximation steps
and obtaining the optimal surface from the solution of an appropriate finite linear programming problem. Moreover, the optimal
value for the general form of the objective function and the nearly optimal shape were determined by implementing Simplex
algorithm perfectly well. Additionally, in this method, a smoother shape was obtained by rejecting the outlier data and smooth
fitting procedures. Compared with other methods, this approach is more practicable since the results are obtained by solving one
LP. Furthermore, this approach avoids complications such as shape derivative, rate of shape changes, mesh design and initial shape,
thereby reducing error. Then, this method gives us a smoother shape by rejecting the outlier data. It is also especially practical and
accurate enough for systems with nonlinear terms. Also, accuracy can be improved to whatever extent desired.

2 We remind that the similar problem is considered.
12
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Fig. 9. LoOP flowchart for identifying outlier data.
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